Silverbendix7505

Z Iurium Wiki

Simulation results show up to 41% improvement in packet delivery ratio (PDR) and up to 27% reduction in power consumption by intelligent scheduling at lower transmission power levels. Moreover, experimental results on a custom test-bed demonstrate an average PDR increase of 20% and 18% when using our adaptive EMG- and heart-rate-based transmission power control methods, respectively.Performing network-based analysis on medical and biological data makes a wide variety of machine learning tools available. Clustering, which can be used for classification, presents opportunities for identifying hard-to-reach groups for the development of customized health interventions. Due to a desire to convert abundant DNA gene co-expression data into networks, many graph inference methods have been developed. Likewise there are many clustering and classification tools. This paper presents a comparison of techniques for graph inference and clustering, using different numbers of features, in order to select the best tuple of graph inference method, clustering method, and number of features according to a particular phenotype. An extensive machine learning based analysis of the REGARDS dataset is conducted, evaluating the CoNet and K-Nearest Neighbors (KNN) network inference methods, along with the Louvain, Leiden and NBR-Clust clustering techniques. Results from analysis involving five internal cluster evaluation indices show the traditional KNN inference method and NBR-Clust and Louvain clustering produce the most promising clusters with medical phenotype data. It is also shown that visualization can aid in interpreting the clusters, and that the clusters produced can identify meaningful groups indicating customized interventions.Red blood cell (RBC) segmentation and classification from microscopic images is a crucial step for the diagnosis of sickle cell disease (SCD). In this work, we adopt a deep learning based semantic segmentation framework to solve the RBC classification task. A major challenge for robust segmentation and classification is the large variations on the size, shape and viewpoint of the cells, combining with the low image quality caused by noise and artifacts. To address these challenges, we apply deformable convolution layers to the classic U-Net structure and implement the deformable U-Net (dU-Net). U-Net architecture has been shown to offer accurate localization for image semantic segmentation. Moreover, deformable convolution enables free-form deformation of the feature learning process, thus making the network more robust to various cell morphologies and image settings. dU-Net is tested on microscopic red blood cell images from patients with sickle cell disease. Results show that dU-Net can achieve highest accuracy for both binary segmentation and multi-class semantic segmentation tasks, comparing with both unsupervised and state-of-the-art deep learning based supervised segmentation methods. Through detailed investigation of the segmentation results, we further conclude that the performance improvement is mainly caused by the deformable convolution layer, which has better ability to separate the touching cells, discriminate the background noise and predict correct cell shapes without any shape priors.For an uncertain multiagent system, distributed cooperative learning control exerting the learning capability of the control system in a cooperative way is one of the most important and challenging issues. This article aims to address this issue for an uncertain high-order nonlinear multiagent system with guaranteed transient performance and preserved initial connectivity under an undirected and static communication topology. The considered multiagent system has an identical structure and the uncertain agent dynamics are estimated by localized radial basis function (RBF) neural networks (NNs) in a cooperative way. The NN weight estimates are rigorously proven to converge to small neighborhoods of their common optimal values along the union of all agents' trajectories by a deterministic learning theory. Consequently, the associated uncertain dynamics can be locally accurately identified and can be stored and represented by constant RBF networks. Using the stored knowledge on identified system dynamics, an experience-based distributed controller is proposed to improve the control performance and reduce the computational burden. The theoretical results are demonstrated on an application to the formation control of a group of unmanned surface vehicles.For the real-world time series analysis, data missing is a ubiquitously existing problem due to anomalies during data collecting and storage. If not treated properly, this problem will seriously hinder the classification, regression, or related tasks. Existing methods for time series imputation either impose too strong assumptions on the distribution of missing data or cannot fully exploit, even simply ignore, the informative temporal dependencies and feature correlations across different time steps. In this article, inspired by the idea of conditional generative adversarial networks, we propose a generative adversarial learning framework for time series imputation under the condition of observed data (as well as the labels, if possible). In our model, we employ a modified bidirectional RNN structure as the generator G, which is aimed at generating the missing values by taking advantage of the temporal and nontemporal information extracted from the observed time series. The discriminator D is designed to distinguish whether each value in a time series is generated or not so that it can help the generator to make an adjustment toward a more authentic imputation result. For an empirical verification of our model, we conduct imputation and classification experiments on several real-world time series data sets. The experimental results show an eminent improvement compared with state-of-the-art baseline models.Gradient-boosted decision trees (GBDTs) are widely used in machine learning, and the output of current GBDT implementations is a single variable. When there are multiple outputs, GBDT constructs multiple trees corresponding to the output variables. The correlations between variables are ignored by such a strategy causing redundancy of the learned tree structures. learn more In this article, we propose a general method to learn GBDT for multiple outputs, called GBDT-MO. Each leaf of GBDT-MO constructs predictions of all variables or a subset of automatically selected variables. This is achieved by considering the summation of objective gains over all output variables. Moreover, we extend histogram approximation into the multiple-output case to speed up training. Various experiments on synthetic and real data sets verify that GBDT-MO achieves outstanding performance in terms of accuracy, training speed, and inference speed.

Autoři článku: Silverbendix7505 (Ditlevsen Meldgaard)