Sigmonpetterson1162

Z Iurium Wiki

InterMetalDB is regularly updated and will continue to be regularly updated with new content in the future. InterMetalDB is a useful tool for all researchers interested in metalloproteins, protein engineering, and metal-driven oligomerization.Binary halide-water complexes X-(H2O) are examined by means of symmetry-adapted perturbation theory, using charge-constrained promolecular reference densities to extract a meaningful charge-transfer component from the induction energy. As is known, the X-(H2O) potential energy surface (for X = F, Cl, Br, or I) is characterized by symmetric left and right hydrogen bonds separated by a C2v-symmetric saddle point, with a tunneling barrier height that is less then 2 kcal/mol except in the case of F-(H2O). PRGL493 molecular weight Our analysis demonstrates that the charge-transfer energy is correspondingly small ( less then 2 kcal/mol except for X = F), considerably smaller than the electrostatic interaction energy. Nevertheless, charge transfer plays a crucial role determining the conformational preferences of X-(H2O) and provides a driving force for the formation of quasi-linear X··· H-O hydrogen bonds. Charge-transfer energies correlate well with measured O-H vibrational redshifts for the halide-water complexes and also for OH-(H2O) and NO2-(H2O), providing some indication of a general mechanism.Pyrrolyl (C4H4N) is a nitrogen-containing aromatic radical that is a derivative of pyrrole (C4H5N) and is an important intermediate in the combustion of biomass. It is also relevant for chemistry in Titan's atmosphere and may be present in the interstellar medium. The lowest-energy isomer, 1-pyrrolyl, has been involved in many experimental and theoretical studies of the N-H photodissociation of pyrrole, yet it has only been directly spectroscopically detected via electron paramagnetic resonance and through the photoelectron spectrum of the pyrrolide anion, yielding three vibrational frequencies. No direct measurements of 2- or 3-pyrrolyl have been made, and little information is known from theoretical calculations beyond their relative energies. Here, we present an ab initio quantum chemical characterization of the three pyrrolyl isomers at the CCSD(T) level of theory in their ground electronic states, with an emphasis on spectroscopic parameters relevant for vibrational and rotational spectroscopy. Equilibrium geometries were optimized at the CCSD(T)/cc-pwCVTZ level of theory, and the quadratic, cubic, and partial quartic force constants were evaluated at CCSD(T)/ANO0 for analysis using second-order vibrational perturbation theory to obtain harmonic and anharmonic vibrational frequencies. In addition, zero-point-corrected rotational constants, electronic spin-rotation tensors, and nuclear hyperfine tensors are calculated for rotational spectroscopy. Our computed structures and energies agree well with earlier density functional theory calculations, and spectroscopic parameters for 1-pyrrolyl are compared with the limited existing experimental data. Finally, we discuss strategies for detecting these radicals using rotational and vibrational spectroscopy on the basis of the calculated spectroscopic constants.Densification in glassy networks has traditionally been described in terms of short-range structures, such as how atoms are coordinated and how the coordination polyhedron is linked in the second coordination environment. While changes in medium-range structures beyond the second coordination shells may play an important role, experimental verification of the densification beyond short-range structures is among the remaining challenges in the physical sciences. Here, a correlation NMR experiment for prototypical borate glasses under compression up to 9 GPa offers insights into the pressure-induced evolution of proximity among cations on a medium-range scale. Whereas amorphous networks at ambient pressure may favor the formation of medium-range clusters consisting primarily of similar coordination species, such segregation between distinct coordination environments tends to decrease with increasing pressure, promoting a more homogeneous distribution of dissimilar structural units. Together with an increase in the average coordination number, densification of glass accompanies a preferential rearrangement toward a random distribution, which may increase the configurational entropy. The results highlight the direct link between the pressure-induced increase in medium-range disorder and the densification of glasses under extreme compression.Atomistic simulation of the 1-octene polymerization reaction by a (pyridylamido)Hf(IV) catalyst was conducted on the basis of Red Moon (RM) methodology, focusing on the effect of the counteranions (CAs), MeB(C6F5)3-, and B(C6F5)4-, on the catalyst activity and chain termination reaction. We show that RM simulation reasonably reproduces the faster reaction rate with B(C6F5)4- than with MeB(C6F5)3-. Notably, the initiation of the polymerization reaction with MeB(C6F5)3- is comparatively slow due to the difficulty of the first insertion. Then, we investigated the free energy map of the ion pair (IP) structures consisting of each CA and the cationic (pyridylamido)Hf(IV) catalyst with the growing polymer chain (HfCatPn+), which determines the polymerization reaction rates, and found that HfCatPn+-MeB(C6F5)3- can keep forming "inner-sphere" IPs even after the polymer chain becomes sufficiently bulky, while HfCatPn+-B(C6F5)4- forms mostly "outer-sphere" IPs. Finally, we further tried to elucidate the origin of the broader molecular weight distribution (MWD) of the polymer experimentally produced with B(C6F5)4- than that with MeB(C6F5)3-. Then, through the trajectory analysis of the RM simulations, it was revealed that the chain termination reaction would be more sensitive to the IP structures than the monomer insertion reaction because the former involves a more constrained structure than the latter, which is likely to be a possible origin of the MWDs dependent on the CAs.In2O3 nanofibers usually suffer a high off-current and consequent low on/off current ratio, as well as a large negative threshold voltage (Vth). Furthermore, regarding Zn doped binary-cation In2O3 nanofibers, severe thermal diffusion of Zn elements can result in deteriorated electrical performance when annealed at high temperature. Here, we applied an electrospinning technique to obtain ternary-cation IAZO nanofibers with controllable Vth and chemical stoichiometry. The presence of the Al element in IAZO nanofibers can lead to more superior microstructure with improved uniformity, lower surface defect, and superior metal-oxide-metal lattice at high annealing temperature. Consequently, our Al-doped ternary-cation IAZO devices exhibited an improved on/off current ratio of 107 and a high electron mobility of ∼10 cm2 V-1 s-1. Moreover, the electron mobility can be increased to 30 cm2 V-1 s-1 in our low-voltage operated FETs with high-k AlO x as the dielectric layer, which can be envisioned to exhibit vast implications for high-performance transparent electronics.

Autoři článku: Sigmonpetterson1162 (Bonner Jones)