Shorekay8610
Acute myeloid leukaemia (AML) is a haematopoietic malignancy caused by a combination of genetic and epigenetic lesions. Activation of the oncoprotein FLT3 ITD (Fms-like tyrosine kinase with internal tandem duplications) represents a key driver mutation in 25-30% of AML patients. FLT3 is a class III receptor tyrosine kinase, which plays a role in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Mutant FLT3 ITD results in an altered signalling quality, which causes cell transformation. Recent evidence indicates an effect of FLT3 ITD on bone homeostasis in addition to haematological aberrations. Using gene expression data repositories of FLT3 ITD-positive AML patients, we identified activated cytokine networks that affect the formation of the haematopoietic niche by controlling osteoclastogenesis and osteoblast functions. In addition, aberrant oncogenic FLT3 signalling of osteogenesis-specific cytokines affects survival of AML patients and may be used for prognosis. Thus, these data highlight the intimate crosstalk between leukaemic and osteogenic cells within the osteohaematopoietic niche.Background It remains unclear which anthropometric measure best predicts elevated high-sensitivity C-reactive protein (hs-CRP) levels. This study investigated the association and synergistic interaction of two obesity indices with elevated hs-CRP levels in a national sample of Korean adults, stratified by sex. Methods The present cross-sectional study used data from the 2015-2018 Korea National Health and Nutrition Examination Survey of 18,610 subjects aged ≥20 years after excluding those with missing variables. Multiple logistic regression analyses and chi-squared tests were performed to investigate the association between body mass index (BMI) and waist circumference (WC) with elevated hs-CRP levels. Interaction analysis was used to examine the synergistic effect between BMI and WC on the risk of having elevated hs-CRP levels. Results Elevated hs-CRP levels exceeding 3 mg/L were present in 9.3% and 7.5% of men and women, respectively. The relationship between each obesity index and elevated hs-CRP levels was significant in women (high WC (odds ratio [OR] = 1.77, 95% confidence interval [CI] = 1.24-2.54), high BMI (OR = 2.08, 95% CI = 1.58-2.74)) but not in men (high WC (OR = 1.19, 95% CI = 0.86-1.64), high BMI (OR = 0.99, 95% CI = 0.77-1.29)). Furthermore, combined measures of the two obesity indices and interaction analysis results revealed a synergistic association in men (OR = 1.57, 95% CI = 1.33-1.85; relative excess risk due to interaction (RERI) = 0.39, 95% CI = -0.09-0.86), and women (OR = 3.70, 95% CI = 3.09-4.43; RERI = 0.85, 95% CI = -0.06-1.75). Conclusion BMI and WC were significantly associated with a risk of elevated hs-CRP levels in women but not in men. Nevertheless, significant synergistic interactions were seen in combined measures of BMI and WC, regardless of sex. These findings emphasize the need to use both measures of adiposity concurrently in the assessment of obesity and when identifying cardiovascular risk.Antiphospholipid Syndrome (APS) is an autoimmune disease characterized by arterial and/or venous thrombosis and/or pregnancy morbidity, associated with circulating antiphospholipid antibodies (aPL). In some cases, patients with a clinical profile indicative of APS (thrombosis, recurrent miscarriages or fetal loss), who are persistently negative for conventional laboratory diagnostic criteria, are classified as "seronegative" APS patients (SN-APS). Several findings suggest that aPL, which target phospholipids and/or phospholipid binding proteins, mainly β-glycoprotein I (β-GPI), may contribute to thrombotic diathesis by interfering with hemostasis. Despite the strong association between aPL and thrombosis, the exact pathogenic mechanisms underlying thrombotic events and pregnancy morbidity in APS have not yet been fully elucidated and multiple mechanisms may be involved. Furthermore, in many SN-APS patients, it is possible to demonstrate the presence of unconventional aPL ("non-criteria" aPL) or to detect aPL with alternative laboratory methods. These findings allowed the scientists to study the pathogenic mechanism of SN-APS. This review is focused on the evidence showing that these antibodies may play a functional role in the signal transduction pathway(s) leading to thrombosis and pregnancy morbidity in SN-APS. A better comprehension of the molecular mechanisms triggered by aPL may drive development of potential therapeutic strategies in APS patients.Radiocaesium is a pollutant with a high risk for the environment, agricultural production, and human health. It is mobile in ecosystems and can be taken up by plants via potassium transporters. In this study, we focused on the role of potassium transporter AtKUP7 of the KT/HAK/KUP family in Cs+ and K+ uptake by plants and in plant tolerance to caesium toxicity. We detected that Arabidopsiskup7 mutant accumulates significantly lower amounts of 134Cs in the root (86%) and in the shoot (69%) compared to the wild-type. On the other hand ability of the mutant to grow on media with toxic (100 and 200 µM) concentrations of Cs+ was not changed; moreover its growth was not impaired on low K+. We further investigated another mutant line in AtKUP7 and found that the growth phenotype of the kup7 mutants in K+ deficient conditions is much milder than previously published. Also, their accumulation of K+ in shoots is hindered only by severe potassium shortage.Ketamine is a non-competitive antagonist of NMDA (N-methyl-D-aspartate) receptor, which has been in clinical practice for over a half century. Despite recent data suggesting its harmful side effects, such as neuronal loss, synapse dysfunction or disturbed neural network formation, the drug is still applied in veterinary medicine and specialist anesthesia. Several lines of evidence indicate that structural and functional abnormalities in the nervous system caused by ketamine are crosslinked with the imbalanced activity of multiple Ca2+-regulated signaling pathways. Due to its ubiquitous nature, Ca2+ is also frequently located in the center of ketamine action, although the precise mechanisms underlying drug's negative or therapeutic properties remain mysterious for the large part. This review seeks to delineate the relationship between ketamine-triggered imbalance in Ca2+ homeostasis and functional consequences for downstream processes regulating key aspects of neuronal function.The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrta suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.Rare neurological diseases are a heterogeneous group corresponding approximately to 50% of all rare diseases. Neurologists are among the main specialists involved in their diagnostic investigation. At the moment, a consensus guideline on which neurologists may base clinical suspicion is not available. Moreover, neurologists need guidance with respect to screening investigations that may be performed. In this respect, biomarker research has emerged as a particularly active field due to its potential applications in clinical practice. With respect to autoimmune demyelinating diseases of the Central Nervous System (CNS), although these diseases occur in the frame of organ-specific autoimmunity, pathology of the disease itself is orchestrated among several anatomical and functional compartments. The differential diagnosis is broad and includes, but is not limited to, rare neurological diseases. Multiple Sclerosis (MS) needs to be differentially diagnosed from rare MS variants, Acute Disseminated Encephalomyelitis (ADEM), the range of Neuromyelitis Optica Spectrum Disorders (NMOSDs), Myelin Oligodendrocyte Glycoprotein (MOG) antibody disease and other systemic inflammatory diseases. Diagnostic biomarkers may facilitate timely diagnosis and proper disease management, preventing disease exacerbation due to misdiagnosis and false treatment. In this review, we will describe advances in biomarker research with respect to rare neuroinflammatory disease of the CNS.Joint optimal subcarrier and transmit power allocation with QoS guarantee for enhanced packet transmission over Cognitive Radio (CR)-Internet of Vehicles (IoVs) is a challenge. This open issue is considered in this paper. A novel SNBS-based wireless radio resource scheduling scheme in OFDMA CR-IoV network systems is proposed. This novel scheduler is termed the SNBS OFDMA-based overlay CR-Assisted Vehicular NETwork (SNO-CRAVNET) scheduling scheme. It is proposed for efficient joint transmit power and subcarrier allocation for dynamic spectral resource access in cellular OFDMA-based overlay CRAVNs in clusters. The objectives of the optimization model applied in this study include (1) maximization of the overall system throughput of the CR-IoV system, (2) avoiding harmful interference of transmissions of the shared channels' licensed owners (or primary users (PUs)), (3) guaranteeing the proportional fairness and minimum data-rate requirement of each CR vehicular secondary user (CRV-SU), and (4) ensuring efficient transmit power allocation amongst CRV-SUs. Furthermore, a novel approach which uses Lambert-W function characteristics is introduced. Closed-form analytical solutions were obtained by applying time-sharing variable transformation. Finally, a low-complexity algorithm was developed. This algorithm overcame the iterative processes associated with searching for the optimal solution numerically through iterative programming methods. Theoretical analysis and simulation results demonstrated that, under similar conditions, the proposed solutions outperformed the reference scheduler schemes. In comparison to other scheduling schemes that are fairness-considerate, the SNO-CRAVNET scheme achieved a significantly higher overall average throughput gain. Similarly, the proposed time-sharing SNO-CRAVNET allocation based on the reformulated convex optimization problem is shown to be capable of achieving up to 99.987% for the average of the total theoretical capacity.The sea sandwort-Honckenya peploides (L.) Ehrh. is-a rare halophilous plant growing on dunes and is an endangered species on the Polish coast. It contributes to the stabilization of volatile sandy substrate, facilitating the colonization of other species. The present study determined the reaction of two types of explant apical shoot fragments and fragments from a lower portion of the shoot. Apical shoot fragments were used to propagate and root sea sandwort plants due to the positive impact on the development of shoots and roots. Regardless of the plant growth regulators applied in the medium, the lateral meristems on the explants from the lower parts of the shoot stopped growing, and then yellowed and died out. Apical fragments of shoots developed higher and more numerous shoots and longer and more numerous roots than explants, which were fragments collected from lower parts of shoots. The findings indicated that propagation should be conducted on Murashige and Skoog medium with the addition of 1 mg∙dm-3 kinetin, whereas shoots with their apical fragments should be rooted with the addition of 1.5 mg∙dm-3 1-naphthaleneacetic acid. The results also showed that the addition of NaCl at concentrations of 25 and 50 mM did not restrict their growth, thereby indicating the tolerance of the plant to soil salinity. However, an increase in the concentration of NaCl in the medium to 75 mM restricted the development of plants, and the shoots were lower and roots were shorter and less numerous.Patients with advanced biliary tract cancer (BTC) inevitably experience progression after first-line, gemcitabine-based chemotherapy, due to chemo-resistance. The genetic alterations of DNA damage repair (DDR) genes are usually determined in BTC tumors. In this study, we found that the POLQ mRNA levels are downregulated and the ataxia-telangiectasia mutated (ATM) inhibitor AZD0156 was more sensitive in gemcitabine-resistant BTC sublines than in the parental cell lines. The knockdown of DNA polymerase θ does not affect cell proliferation, but its combination with the ATM inhibitor facilitated cell death in gemcitabine-resistant and gemcitabine-intensive BTC cells. Moreover, in the DNA damage caused by photon, hydrogen peroxide, or chemotherapy drugs, synthetic lethal interactions were found in combination with ATM inhibition by AZD0156 and DNA polymerase θ depletion, resulting in increased DNA damage accumulation and micronucleus formation, as well as reduced cell survival and colony formation. Collectively, our results reveal that ATM acts as a potential target in gemcitabine-resistant and DNA polymerase θ-deficient BTC.
Adolescence represents a critical period for rapid psychophysical and socio-cognitive changes, with implications for health and wellbeing in later life. From this perspective, the manifestation of unhealthy lifestyles and dysfunctional behaviors may reflect a change in wellbeing requiring alertness and prompt intervention. This study investigated lifestyle behaviors and coping strategies among Italian adolescents, also in relation to the ongoing COVID-19 pandemic, and whether they would predict a change in subjective wellbeing.
In the period between 1 April and 10 April 2020, adolescents aged 15-21 filled out an online survey consisting of 33 questions investigating socio-demographic characteristics, lifestyle behaviors, coping strategies, and subjective wellbeing.
Data was available on 306 participants. Most adolescents planned their daily routine (57.8%), engaging in structured activities (17.6-67.3%) and developing new interests (54.6%), and gave a positive reading of the ongoing period (57.8%), thusrrels, OR = 2.158, 95% CI 1.122-4.150), school-related behaviors (fearing a negative educational outcome, OR = 1.971, 95% 1.063-3.655), and female gender (OR = 3.647, 95% CI 1.694-7.851).
Both personal and environmental coping resources are relevant to subjective wellbeing in adolescence and should be taken into account for prevention and early intervention in youth mental health.
Both personal and environmental coping resources are relevant to subjective wellbeing in adolescence and should be taken into account for prevention and early intervention in youth mental health.The retinal pigment epithelium (RPE) is located between the neuroretina and the choroid, and plays a critical role in vision. RPE cells internalise outer segments (OS) from overlying photoreceptors in the daily photoreceptor renewal. Changes to RPE structure are linked with age and retinopathy, which has been described in the past by conventional 2D electron microscopy. We used serial block face scanning electron microscopy (SBF-SEM) to reconstruct RPE cells from the central mouse retina. Three-dimensional-reconstructed OS revealed the RPE to support large numbers of photoreceptors (90-216 per RPE cell). Larger bi-nucleate RPE maintained more photoreceptors, although their cytoplasmic volume was comparable to smaller mono-nucleate RPE supporting fewer photoreceptors. Scrutiny of RPE microvilli and interdigitating OS revealed the angle and surface area of contact between RPE and photoreceptors. Bi-nucleate RPE contained more mitochondria compared to mono-nucleate RPE. Furthermore, bi-nucleate cells contained larger sub-RPE spaces, supporting a likely association with disease. Use of perfusion-fixed tissues ensured the highest possible standard of preservation, providing novel insights into the 3D RPE architecture and changes linked with retinopathy. This study serves as a benchmark for comparing retinal tissues from donor eyes with age-related macular degeneration (AMD) and other retinopathies.While the important functions of long noncoding RNAs (lncRNAs) in nuclear organization are well documented, their orchestrating and architectural roles in the cytoplasmic environment have long been underestimated. However, recently developed fractionation and proximity labelling approaches have shown that a considerable proportion of cellular lncRNAs is exported into the cytoplasm and associates nonrandomly with proteins in the cytosol and organelles. The functions of these lncRNAs range from the control of translation and mitochondrial metabolism to the anchoring of cellular components on the cytoskeleton and regulation of protein degradation at the proteasome. In the present review, we provide an overview of the functions of lncRNAs in cytoplasmic structures and machineries und discuss their emerging roles in the coordination of the dense intracellular milieu. It is becoming apparent that further research into the functions of these lncRNAs will lead to an improved understanding of the spatiotemporal organization of cytoplasmic processes during homeostasis and disease.Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102-103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 μm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 μm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics.Absorbents used in closed and semi-closed circuit environments play a key role in preventing carbon dioxide poisoning. Here we present an analysis of one of the most common carbon dioxide absorbents-soda lime. In the first step, we analyzed the composition of fresh and used samples. For this purpose, volumetric and photometric analyses were introduced. Thermal properties and decomposition patterns were also studied using thermogravimetric and X-ray powder diffraction (PXRD) analyses. We also investigated the kinetics of carbon dioxide absorption under conditions imitating a closed-circuit environment.IEEE Time-Sensitive Networking (TSN) Task Group specifies a series of standards such as 802.1Qbv for enhancing the management of time-critical flows in real-time networks. Under the IEEE 802.1Qbv standard, the scheduling algorithm is employed to determine the time when a specific gate in the network entities is opened or closed so that the real-time requirements for the flows are guaranteed. The computation time of this scheduling algorithm is critical for the system where dynamic network configurations and settings are required. In addition, the network routing where the paths of the flows are determined has a significant impact on the computation time of the network scheduling. This paper presents a novel scheduling-aware routing algorithm to minimize the computation time of the scheduling algorithm in network management. The proposed routing algorithm determines the path for each time-triggered flow by including the consideration of the period of the flow. This decreases the occurrence of path-conflict during the stage of network scheduling. The detailed outline of the proposed algorithm is presented in this paper. The experimental results show that the proposed routing algorithm reduces the computation time of network scheduling by up to 30% and improves the schedulability of time-triggered flows is the network.Physiological variables such as maximal oxygen uptake (VO2max), velocity at maximal oxygen uptake (vVO2max), running economy (RE) and changes in lactate levels are considered the main factors determining performance in long-distance races. The aim of this review was to present the mathematical models available in the literature to estimate performance in the 5000 m, 10,000 m, half-marathon and marathon events. Eighty-eight articles were identified, selections were made based on the inclusion criteria and the full text of the articles were obtained. The articles were reviewed and categorized according to demographic, anthropometric, exercise physiology and field test variables were also included by athletic specialty. A total of 58 studies were included, from 1983 to the present, distributed in the following categories 12 in the 5000 m, 13 in the 10,000 m, 12 in the half-marathon and 21 in the marathon. A total of 136 independent variables associated with performance in long-distance races were considered, 43.4% of which pertained to variables derived from the evaluation of aerobic metabolism, 26.5% to variables associated with training load and 20.6% to anthropometric variables, body composition and somatotype components. The most closely associated variables in the prediction models for the half and full marathon specialties were the variables obtained from the laboratory tests (VO2max, vVO2max), training variables (training pace, training load) and anthropometric variables (fat mass, skinfolds). A large gap exists in predicting time in long-distance races, based on field tests. Physiological effort assessments are almost exclusive to shorter specialties (5000 m and 10,000 m). The predictor variables of the half-marathon are mainly anthropometric, but with moderate coefficients of determination. The variables of note in the marathon category are fundamentally those associated with training and those derived from physiological evaluation and anthropometric parameters.Stage pT1 bladder cancer (BC) shows highly diverse outcomes. Predictive markers are required to stratify patients for personalized treatment. The present study aimed to validate immune response quantification as a prognostic marker. Patients with pT1 BC (n = 167) treated by transurethral resection of the bladder (TURB) were enrolled. Formaldehyde-fixed paraffin-embedded material was stained for CD3 and CD8. Corresponding T cells were counted in three regions with the highest immune response. Numbers of tertiary lymphoid structures (TLS) and lymphocyte aggregates (LA) were quantified. High CD3+ stroma T-cell infiltration was associated with improved survival (p = 0.045), especially in the G3 subgroup (p = 0.01). Cluster with higher immune response showed less recurrence (p = 0.034) and favorable overall survival (OS) (p = 0.019). In contrast, higher CD3+ and CD8+ tumor T-cell infiltration seemed to have a negative impact on prognosis. TLS and LA were more frequently observed in G3 tumors, indicating an increased anti-tumoral immune response. We proved the role of immune cell infiltration and showed that higher infiltration numbers of CD3+ (not CD8+) lymphocytes in the stroma are associated with favorable outcome. Immune cell quantification could be used as a marker to help stratify patients' risk and therefore, to optimize patients' management and follow-up examination as well as possible therapies.Mycobacterium tuberculosis (MTB) is the principal cause of human tuberculosis (TB), which is a serious health problem worldwide. The development of innovative therapeutic modalities to treat TB is mainly due to the emergence of multi drug resistant (MDR) TB. Autophagy is a cell-host defense process. Previous studies have reported that autophagy-activating agents eliminate intracellular MDR MTB. Thus, combining a direct antibiotic activity against circulating bacteria with autophagy activation to eliminate bacteria residing inside cells could treat MDR TB. We show that the synthetic peptide, IP-1 (KFLNRFWHWLQLKPGQPMY), induced autophagy in HEK293T cells and macrophages at a low dose (10 μM), while increasing the dose (50 μM) induced cell death; IP-1 induced the secretion of TNFα in macrophages and killed Mtb at a dose where macrophages are not killed by IP-1. Moreover, IP-1 showed significant therapeutic activity in a mice model of progressive pulmonary TB. In terms of the mechanism of action, IP-1 sequesters ATP in vitro and inside living cells. Thus, IP-1 is the first antimicrobial peptide that eliminates MDR MTB infection by combining four activities reducing ATP levels, bactericidal activity, autophagy activation, and TNFα secretion.Maternal nutritional and metabolic status influence fetal growth. This study investigated the contribution of gestational weight gain (GWG), gestational diabetes (GDM), and maternal obesity to birthweight and newborn body fat. It is a secondary analysis of a prospective study including 204 women with a pregestational body mass index (BMI) of 18.5-24.9 kg/m2 and 219 women with BMI ≥ 30 kg/m2. GDM was screened in the second and third trimester and was treated by dietary intervention, and insulin if required. Maternal obesity had the greatest effect on skinfolds (+1.4 mm) and cord leptin (+3.5 ng/mL), but no effect on birthweight. GWG was associated with increased birthweight and skinfolds thickness, independently from GDM and maternal obesity. There was an interaction between third trimester weight gain and GDM on birthweight and cord leptin, but not with maternal obesity. On average, +1 kg in third trimester was associated with +13 g in birthweight and with +0.64 ng/mL in cord leptin, and a further 32 g and 0.89 ng/mL increase in diabetic mothers, respectively. Maternal obesity is the main contributor to neonatal body fat. There is an independent association between third trimester weight gain, birthweight, and neonatal body fat, enhanced by GDM despite intensive treatment.Hazardous use of alcohol is a global public health concern. Statistics suggest that this is particularly common in Europe, and among higher education students. Although it has been established that various factors-ranging from the individual to the overarching societal level-are associated with misuse of alcohol, few studies take multiple levels of influence into account simultaneously. The current study, therefore, used a social ecological framework to explore associations between variables from multiple levels of influence and the hazardous use of alcohol. Data were obtained from a representative sample of higher education students from Flanders, Belgium (n = 21,854), and explored using hierarchical multiple regression analyses. The results demonstrated that the individual, interpersonal, organizational, community, and policy levels, were all associated with risky alcohol consumption. When devising interventions, policymakers should, therefore, take into consideration that variables from multiple levels of influence are at play. Students' capacities to change or maintain their alcohol consumption behaviors may be undermined if social settings, overarching environments, social norms, and policies are not conducive to their motivations and social expectations.Compared to other appointment methods in public hospitals, registering through the Internet or utilizing e-appointments, or registering online as an outpatient, can provide more information to the user. This research investigated the integration of unified theory of the acceptance and use of technology and information system quality in determining factors that influence the adoption of e-appointments by patients, based on the requirements of food safety consultation in Taiwan. Empirical data from 369 valid samples were assessed using Partial Least Squares (PLS). The key findings of this study indicated that patients' acceptance of e-appointments was influenced by users' perceptions (i.e., performance expectancy and facilitating conditions), along with information quality and service quality. The practical and academic implications are provided for future practitioners and scholars, and to enhance patients' usage of e-appointments in their healthcare activities.Background Studies on the solitude capacity of university students have been extremely limited and failed to clearly illustrate the correlation of solitude capacity with internal psychological variables and the favorability of interpersonal relationships. The aim of this study was to explore the correlation of college students' solitude capacity with scores for self-esteem, self-efficacy, and interpersonal relationships. Method A cross-sectional study was adopted for this study. Data were collected from a university in southern Taiwan using a structured questionnaire, the content of which included demographic data and scores from the Rosenberg Self-Esteem Scale (RSE), the General Self-Efficacy Scale (GSE), the Interpersonal Relationship Scale (IRS), and the Solitude Capacity Scale (SCS). Results The final sample comprised 562 participants (mean age = 17.51 ± 1.27 years). Adjustment of the demographic variables yielded a significantly positive correlation in the total RSE and SCS (p less then 0.01) scores and that in the total GSE and SCS (p less then 0.01) scores. Moreover, the relationship with family (IRS subscale) and total SCS score (p less then 0.05) exhibited a significant positive correlation. Conclusion The findings of this study reveal that solitude capacity is significantly correlated with self-esteem, self-efficacy, and the favorability of family relationships.Pregnane X receptor (PXR) activation has been found to regulate glucose and lipid metabolism and affect obesity in response to high-fat diets. PXR also modulates vascular tone. In fact, PXR appears to regulate multiple components of metabolic syndrome. In most cases, the effect of PXR action is harmful to metabolic health, and PXR can be hypothesized to play an important role in metabolic disruption elicited by exposure to endocrine-disrupting chemicals. The majority of the data on the effects of PXR activation on metabolic health come from animal and cell culture experiments. However, randomized, placebo-controlled, human trials indicate that the treatment with PXR ligands impairs glucose tolerance and increases 24-h blood pressure and heart rate. In addition, plasma 4β-hydroxycholesterol (4βHC), formed under the control of PXR in the liver, is associated with lower blood pressure in healthy volunteers. Furthermore, 4βHC regulates cholesterol transporters in peripheral tissues and may activate the beneficial reverse HDL cholesterol transport. In this review, we discuss the current knowledge on the role of PXR and the PXR-4βHC axis in the regulation of components of metabolic syndrome.This article presents the results of studies on the impact of acoustic waves on geophones and microphones used to measure airblasts carried out in a reverberation chamber. During the tests, a number of test signals were generated, of which two are presented in this article frequency-modulated sine (sine sweep) waves in the 30-300 Hz range, and the result of detonating 3 g of pyrotechnic material inside the chamber. Then, based on the short-time Fourier transform, the spectral subtraction method was used to remove unwanted disruption interfering with the recorded signal. Using MATLAB software, a program was written that was calibrated and adapted to the specifics of the measuring equipment based on the collected test results. As a result, it was possible to clean the signals of interference and obtain a vibration signal propagated by the substrate. The results are based on signals registered in the laboratory and made in field conditions during the detonation of explosive materials.Disgust triggers behavioral avoidance of pathogen-carrying and fitness-reducing agents. However, because of the cost involved, disgust sensitivity should be flexible, varying as a function of an individual's immunity. Asymptomatic colonization with Staphylococcus aureus often results from weakened immunity and is a potential source of subsequent infections. In this study, we tested if pharyngeal colonization with S. aureus, evaluated based on a single swab collection, is related to an individual's disgust sensitivity, measured with the Three Domain Disgust Scale. Levels of immunomodulating hormones (cortisol and testosterone), general health, and body adiposity were controlled. Women (N = 95), compared to men (N = 137), displayed higher sexual disgust sensitivity, but the difference between individuals with S. aureus and without S. aureus was significant only in men, providing support for prophylactic hypothesis, explaining inter-individual differences in disgust sensitivity. Men (but not women) burdened with asymptomatic S. aureus presence in pharynx exhibit higher pathogen disgust (p = 0.04) compared to individuals in which S. aureus was not detected. The positive relationship between the presence of the pathogen and sexual disgust was close to the statistical significance level (p = 0.06), and S. aureus colonization was not related with moral disgust domain.Campylobacter species have developed resistance to existing antibiotics. The development of alternative therapies is, therefore, a necessity. This study evaluates the susceptibility of Campylobacter strains to selected natural products (NPs) and frontline antibiotics. Two C. jejuni strains (ATCC® 33560TM and MT947450) and two C. coli strains (ATCC® 33559TM and MT947451) were used. The antimicrobial potential of the NPs, including plant extracts, essential oils, and pure phytochemicals, was evaluated by broth microdilution. The growth was measured by spectrophotometry and iodonitrotetrazolium chloride. Antibiotic resistance genes (tet(O) and gyrA) were characterized at the molecular level. The minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) ranged from 25 to 1600 µg/mL. Cinnamon oil, (E)-Cinnamaldehyde, clove oil, eugenol, and baicalein had the lowest MIC and MBC values (25-100 µg/mL). MT947450 and MT947451 were sensitive to erythromycin and gentamicin but resistant to quinolones and tetracycline. Mutations in gyrA and tet(O) genes from resistant strains were confirmed by sequencing. The findings show that NPs are effective against drug-sensitive and drug-resistant Campylobacter strains. The resistance to antibiotics was confirmed at phenotypic and genotypic levels. This merits further studies to decipher the action mechanisms and synergistic activities of NPs.Spectral reconstruction algorithms recover spectra from RGB sensor responses. Recent methods-with the very best algorithms using deep learning-can already solve this problem with good spectral accuracy. However, the recovered spectra are physically incorrect in that they do not induce the RGBs from which they are recovered. Moreover, if the exposure of the RGB image changes then the recovery performance often degrades significantly-i.e., most contemporary methods only work for a fixed exposure. In this paper, we develop a physically accurate recovery method the spectra we recover provably induce the same RGBs. Key to our approach is the idea that the set of spectra that integrate to the same RGB can be expressed as the sum of a unique fundamental metamer (spanned by the camera's spectral sensitivities and linearly related to the RGB) and a linear combination of a vector space of metameric blacks (orthogonal to the spectral sensitivities). Physically plausible spectral recovery resorts to finding a spectrum that adheres to the fundamental metamer plus metameric black decomposition. To further ensure spectral recovery that is robust to changes in exposure, we incorporate exposure changes in the training stage of the developed method. In experiments we evaluate how well the methods recover spectra and predict the actual RGBs and RGBs under different viewing conditions (changing illuminations and/or cameras). The results show that our method generally improves the state-of-the-art spectral recovery (with more stabilized performance when exposure varies) and provides zero colorimetric error. Moreover, our method significantly improves the color fidelity under different viewing conditions, with up to a 60% reduction in some cases.Haemaphysalis longicornis Neumann, 1901 is a vector of many pathogens of public and veterinary health importance in its native range in East Asia and introduced range in Oceania. In North America, this tick was first detected in New Jersey in 2017. Currently, this tick has been reported from 15 states of the United States. In this study, we modeled the habitat suitability of H. longicornis using the MaxEnt modeling approach. We separated occurrence records from the published literature from four different geographical regions in the world and developed MaxEnt models using relevant environmental variables to describe the potential habitat suitability of this tick in North America. The predictive accuracy of the models was assessed using the U.S. county locations where this tick species has been reported. Our best model predicted that the most suitable North American areas for geographic expansion of H. longicornis are from Arkansas-South Carolina to the south of Quebec-Nova Scotia in the east, and from California to the coast of British Columbia in the west. Enhanced surveillance and further investigation are required to gain a better understanding of the role that this tick might play in the transmission of diseases to humans and animals in North America.Evaporative cooling towers to dissipate excess process heat are essential installations in a variety of industries. The constantly moist environment enables substantial microbial growth, causing both operative challenges (e.g., biocorrosion) as well as health risks due to the potential aerosolization of pathogens. Currently, bacterial levels are monitored using rather slow and infrequent sampling and cultivation approaches. In this study, we describe the use of metabolic activity, namely oxygen respiration, as an alternative measure of bacterial load within cooling tower waters. This method is based on optical oxygen sensors that enable an accurate measurement of oxygen consumption within a closed volume. We show that oxygen consumption correlates with currently used cultivation-based methods (R2 = 0.9648). The limit of detection (LOD) for respiration-based bacterial quantification was found to be equal to 1.16 × 104 colony forming units (CFU)/mL. Contrary to the cultivation method, this approach enables faster assessment of the bacterial load with a measurement time of just 30 min compared to 48 h needed for cultivation-based measurements. Furthermore, this approach has the potential to be integrated and automated. Therefore, this method could contribute to more robust and reliable monitoring of bacterial contamination within cooling towers and subsequently increase operational stability and reduce health risks.Arrabidaea brachypoda is a plant commonly used for the treatment of kidney stones, arthritis and pain in traditional Brazilian medicine. Different in vitro and in vivo activities, ranging from antinociceptive to anti-Trypanosoma cruzi, have been reported for the dichloromethane root extract of Arrabidaea brachypoda (DCMAB) and isolated compounds. This work aimed to assess the in vitro anti-inflammatory activity in arthritic synoviocytes of the DCMAB, the hydroethanolic extract (HEAB) and three dimeric flavonoids isolated from the DCMAB. These compounds, brachydin A (1), B (2) and C (3), were isolated both by medium pressure liquid and high-speed counter current chromatography. Their quantification was performed by mass spectrometry on both DCMAB and HEAB. IL-1β activated human fibroblast-like synoviocytes were incubated with both extracts and isolated compounds to determine the levels of pro-inflammatory cytokine IL-6 by enzyme-linked immunosorbent assay (ELISA). DCMAB inhibited 30% of IL-6 release at 25 µg/mL, when compared with controls while HEAB was inactive. IC50 values determined for 2 and 3 were 3-fold higher than 1. The DCMAB activity seems to be linked to higher proportions of compounds 2 and 3 in this extract. These observations could thus explain the traditional use of A. brachypoda roots in the treatment of osteoarthritis.Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Sirtuin 3 (SIRT3) is a mitochondrial protein and its activity can reduce ROS levels by modulating key antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Here, we evaluated the role of SIRT3 in the maintenance of basal levels of ROS in a model of chronic constriction injury (CCI) of the sciatic nerve and the protective effects of a natural antioxidant, the bergamot polyphenolic fraction (BPF). Rats were exposed to CCI of the sciatic nerve in the presence or absence of BPF (25-75 mg/kg). Level of acetylation, post-translational modulation on cysteine residues of proteins by HNE and SIRT3 activation, were detected in the spinal cord through western blotting, WES methodology and enzymatic assays. Our results reported that SIRT3 carbonylation and therefore its inactivation contributes to mitochondrial MnSOD hyperacetylation during CCI induced neuropathic pain in rats. In particular, we have demonstrated a close relation between oxidative stress, hyperalgesia, allodynia and sirtuins inactivation reverted by BPF administration.The purpose of this study was to learn how physical activity, anxiety, resilience and engagement can influence optimism in older adults. An observational, quantitative, descriptive and transversal design was used with non-probabilistic sampling. A descriptive statistical analysis of the sample, Cronbach's alpha test of internal consistency and linear correlation using Pearson's correlation coefficient (r) were performed. In addition, a t-Student test, analysis of variance (ANOVA), Kolmogorov-Smirnov test of normality and Levene test of homogeneity, as well as a multivariate linear regression model, were conducted. Participants who had not engaged in physical activity showed an increased total anxiety and significantly greater decrease in concentration compared to those who had engaged in physical activity. The Revised Life Orientation Test (LOT-R), Utrecht Work Engagement Scale (UWES) and resilience of participants who had not engaged in physical activity were significantly lower than those of the participantf this age group.One of the key elements in assessing traffic safety on the roads is the detection of asphalt conditions. In this paper, we propose an optical sensor based on GeSi nanocrystals embedded in SiO2 matrix that discriminates between different slippery road conditions (wet and icy asphalt and asphalt covered with dirty ice) in respect to dry asphalt. The sensor is fabricated by magnetron sputtering deposition followed by rapid thermal annealing. The photodetector has spectral sensitivity in the 360-1350 nm range and the signal-noise ratio is 102-103. The working principle of sensor setup for detection of road conditions is based on the photoresponse (photocurrent) of the sensor under illumination with the light reflected from the asphalt having different reflection coefficients for dry, wet, icy and dirty ice coatings. For this, the asphalt is illuminated sequentially with 980 and 1064 nm laser diodes. A database of these photocurrents is obtained for the different road conditions. We show that the use of both k-nearest neighbor and artificial neural networks classification algorithms enables a more accurate recognition of the class corresponding to a specific road state than in the case of using only one algorithm. This is achieved by comparing the new output sensor data with previously classified data for each algorithm and then by performing an intersection of the algorithms' results.To identify the most accurate approach for constructing of the dynamic modulus master curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve, respectively. Subsequently, the master curve of phase angle could be predicted from the master curve of dynamic modulus in term of the K-K (Kramers-Kronig) relations. The results show that both SM and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.A blind discrete-cosine-transform-based phase noise compensation (BD-PNC) is proposed to compensate the inter-carrier-interference (ICI) in the coherent optical offset-quadrature amplitude modulation (OQAM)-based filter-bank multicarrier (CO-FBMC/OQAM) transmission system. Since the phase noise sample can be approximated by an expansion of the discrete cosine transform (DCT) in the time-domain, a time-domain compensation model is built for the transmission system. According to the model, phase noise compensation (PNC) depends only on its DCT coefficients. The common phase error (CPE) compensation is firstly performed for the received signal. After that, a pre-decision is made on a part of compensated signals with low decision error probability, and the pre-decision results are used as the estimated values of transmitted signals to calculate the DCT coefficients. Such a partial pre-decision process reduces not only decision error but also the complexity of the BD-PNC method while keeping almost the same performance as in the case of the pre-decision of all compensated signals. Numerical simulations are performed to evaluate the performance of the proposed scheme for a 30 GBaud CO-FBMC/OQAM system. The simulation results show that its bit error rate (BER) performance is improved by more than one order of magnitude through the mitigation of the ICI in comparison with the traditional blind PNC scheme only aiming for CPE compensation.
Effective coordination among multiple departments, including data-sharing, is needed for sound decision-making for health services. India has a district planning process involving departments for local resource-allocation based on shared data. This study assesses the decision-making process at the district level, with a focus on the extent of local data-use for resource allocation for maternal and child health.
Direct observations of key decision-making meetings and qualitative interviews with key informants were conducted in two districts in the State of West Bengal, India. Content analysis of the data maintained within the district health system was done to understand the types of data available and sharing mechanisms. This information was triangulated thematically based on WHO health system blocks.
There was no structured decision-making process and only limited inter-departmental data-sharing. Data on all 21 issues discussed in the district decision-making meetings observed were available within the information systems. Yet indicators for only nine issues-such as institutional delivery and immunisation services were discussed. Discussions about infrastructure and supplies were not supported by data, and planning targets were not linked to health outcomes.
Existing local data is highly under-used for decision-making at the district level. There is strong potential for better interaction between departments and better use of data for priority-setting, planning and follow-up.
Existing local data is highly under-used for decision-making at the district level. There is strong potential for better interaction between departments and better use of data for priority-setting, planning and follow-up.Respiratory rate is a fundamental vital sign that is sensitive to different pathological conditions (e.g., adverse cardiac events, pneumonia, and clinical deterioration) and stressors, including emotional stress, cognitive load, heat, cold, physical effort, and exercise-induced fatigue. The sensitivity of respiratory rate to these conditions is superior compared to that of most of the other vital signs, and the abundance of suitable technological solutions measuring respiratory rate has important implications for healthcare, occupational settings, and sport. However, respiratory rate is still too often not routinely monitored in these fields of use. This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services. We have identified thirteen monitoring goals where the use of the respiratory rate is invaluable, and for each of them we have described suitable sensors and techniques to monitor respiratory rate in specific measurement scenarios. We have also provided a physiological rationale corroborating the importance of respiratory rate monitoring and an original multidisciplinary framework for the development of respiratory monitoring services. This review is expected to advance the field of respiratory monitoring and favor synergies between different disciplines to accomplish this goal.