Shoemakersoto5655
Dry eye (DE) is a chronic, multifactorial ocular surface disease associated with visual disturbance, tear film instability, hyperosmolarity, ocular surface inflammation and damage. Effective intervention is necessary to control this disease. In this study we topically applied α-melanocyte stimulating hormone (α-MSH) on the ocular surface of scopolamine-induced DE rats and found that it promoted tear secretion, reduced tear breakup time and fluorescein sodium staining and increased the number of conjunctival goblet cells. To investigate the mechanism, protein array was conducted, which showed that α-MSH exerted its effects via epithelial growth factor receptor (EGFR) in the JAK-STAT signaling pathway. Furthermore, in vitro experiments showed that α-MSH protected human corneal epithelial cells (hCECs) by maintaining their migration ability and viability and decreasing apoptosis. However, blockade of EGFR abolished these protective effects. Moreover, α-MSH decreased the level of autophagy in benzalkonium chloride (BAC)-stressed hCECs via EGFR. These results demonstrated that α-MSH ameliorated lesions and restored ocular surface functions by upregulating EGFR expression.Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.Per- and polyfluoroalkyl substances (PFAS) are pervasive in the environment resulting in nearly universal detection in people. Human serum PFAS concentrations are strongly associated with increased serum low-density lipoprotein cholesterol (LDL-C), and growing evidence suggests an association with serum triacylglycerides (TG). Here, we tested the hypothesis that perfluorooctanoic acid (PFOA) dysregulates liver and serum triacylglycerides in human peroxisome proliferator activated receptor α (hPPARα)-expressing mice fed an American diet. Mice were exposed to PFOA (3.5 mg/L) in drinking water for 6 weeks resulting in a serum concentration of 48 ± 9 μg/ml. In male and female hPPARα mice, PFOA increased total liver TG and TG substituted with saturated and monounsaturated fatty acids. Lack of expression of PPARα alone also increased total liver TG, and PFOA treatment had little effect on liver TG in PPARα null mice. In hPPARα mice, PFOA neither significantly increased nor decreased serum TG; however, there was a modest increase in TG associated with very low-density cholesterol particles in both sexes. click here Intriguingly, in female PPARα null mice, PFOA significantly increased serum TG, with a similar trend in males. PFOA also modified fatty acid and TG homeostasis-related gene expression in liver, in a hPPARα-dependent manner, but not in adipose. The results of our study and others reveal the importance of context (serum concentration and genotype) in determining the effect of PFOA on lipid homeostasis.With aging society, one of the more challenging obstacles in percutaneous coronary interventions are calcified coronary lesions. Calcified lesions may impede stent delivery, limit balloon and stent expansion, cause uneven drug distribution, and hinder wire advancement. Even in the setting of acceptable procedural success, vessel calcification is independently associated with increased target lesion revascularization rates at follow-up and lower survival rates. In order to effectively manage such lesions, dedicated technologies have been developed. Atherectomy aims at excising tissue and debulking plaques, as well as compressing and reshaping the atheroma, generally referred to as lesion preparation that enables further balloon and/or stent expansion in contemporary clinical practice. In the current review, we will discuss the available methods for atherectomy, including rotational, orbital, and excimer laser coronary atherectomy, as well as intravascular lithotripsy. In addition, we will review the role of imaging in calcified lesions.The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.