Shoemakerbishop2305

Z Iurium Wiki

Interestingly, we noticed significantly higher soil-enzyme activities (phosphatases and glucosidases) and essential metabolites in seedling's rhizosphere after bacteria and diesel treatments. Degradation of longer n-alkane chains in the rhizosphere also revealed a potential pathway that benefits mangroves by bacterial strains during diesel contaminations. Current results support microbes' application to rhizoengineer plant growth, responses, and phytoextraction abilities in environments contaminated with diesel spills. AVAILABILITY OF DATA AND MATERIALS The datasets generated during the current study are available in the NCBI GenBank ((https//www.ncbi.nlm.nih.gov).In this work, the bimetallic iron oxide self-supported electrode was prepared by a simple solvothermal as well as thermal method. CoFe2O4 magnetic nanoparticles were grown in situ on the CFP surface and characterized to reveal the morphology, composition, and electrochemical properties of the electrode. Compared to CFP and CFP@Co-Fe, CFP@CoFe2O4 equipped more efficient mineralization current efficiency and lower energy consumption due to the improved electrocatalytic capacity of CoFe2O4 properly grown on the conductive substrate surface. Further studies showed that the manufactured electrode maintained a high level of stability after continuous operation. According to the free radical trapping experiment, EPR, and liquid mass spectrometry analysis, the rational reaction mechanism of p-nitrophenol was finally proposed, in which ·OH and SO4·- were considered as the main active oxidants. This work demonstrated the great potential of establishing an electro-Fenton system based on CoFe2O4 immobilized self-supporting cathode for environmental remediation.Crystalline rock is one of the host rocks considered for a future deep geological repository for highly active radiotoxic nuclear waste. The safety assessment requires reliable information on the retention behavior of minor actinides. In this work, we applied various spatially resolved techniques to investigate the sorption of Curium onto crystalline rock (granite, gneiss) thin sections from Eibenstock, Germany and Bukov, Czech Republic. We combined Raman-microscopy, calibrated autoradiography and µTRLFS (micro-focus time-resolved fluorescence spectroscopy) with vertical scanning interferometry to study in situ the impact of mineralogy and surface roughness on Cm(III) uptake and molecular speciation on the surface. Heterogeneous sorption of Cm(III) on the surface depends primarily on the mineralogy. However, for the same mineral class sorption uptake and strength of Cm(III) increases with growing surface roughness around surface holes or grain boundaries. When competitive sorption between multiple mineral phases occurs, surface roughness becomes the major retention parameter on low sorption uptake minerals. In high surface roughness areas primarily Cm(III) inner-sphere sorption complexation and surface incorporation are prominent and in selected sites formation of stable Cm(III) ternary complexes is observed. Our molecular findings confirm that predictive radionuclide modelling should implement surface roughness as a key parameter in simulations.Bioremediation based on microbial induced carbonate precipitation (MICP) was conducted in Cd-contaminated seleniferous soils with objective to investigate effects of MICP on the fates of Cd and Se in soils. Results showed that soil indigenous microorganisms could induce MICP process to stabilize Cd and mobilize Se without inputting exogenous urease-producing strain. After remediation, soluble Cd (SOL-Cd) and exchangeable Cd (EXC-Cd) concentrations were decreased respectively by 59.8% and 9.4%, the labile Cd measured by the diffusive gradients in thin-films technique (DGT) was decreased by 14.2%. The MICP stabilized Cd mainly by increasing soil pH and co-precipitating Cd during the formation of calcium carbonate. Compared with chemical extraction method, DGT technique performs better in reflecting Cd bioavailability in soils remediated with MICP since this technique could eliminate the interference of Ca2+. The increase in pH resulted in Se conversion from nonlabile fraction to soluble and exchangeable fractions, thus improving Se bioavailability. And Se in soil solution could adsorb to or co-precipitate with the insoluble calcium carbonate during MICP, which would partly weaken Se bioavailability. Taken together, MICP had positive effects on the migration of Se. In conclusion, MICP could stabilize Cd and improve Se availability simultaneously in Cd-contaminated seleniferous soils.End-of-life vehicles and e-waste contain several hazardous substances that can contaminate the environment during treatment processes. Occurrences and adverse effects of toxic organic pollutants emitted from 3 shredder plants located in Wallonia, Belgium, were investigated by chemical and biological analyses of fluff, dust, and scrubbing sludge sampled in 2019. Site 1 showed the highest concentrations of chlorinated compounds in sludge with 7.5 ng/g polychlorinated dibenzo-dioxins/furans and 84.5 µg/g estimated total polychlorinated biphenyls, while site 3 led the brominated flame retardant levels in dust (53.4 µg/g). The level of polycyclic aromatic hydrocarbons was highest in the sludge samples, 78 and 71 µg/g for sites 2 and 3, respectively. The samples induced significant dioxin-like activities in murine and human cells at concentrations of around 0.01-0.1 and 0.5-1 ng (sample) per ml (medium), respectively, with the efficacy similar to 2,3,7,8-tetrachlorodibenzodioxin and EC50 values of around 1 and 10 ng/ml. The samples also displayed high estrogenic activities, already at 1 ng/ml, and several induced a response as efficient as 17β-estradiol, albeit a low androgenic activity. Shredder workers were estimated to be highly exposed to dioxin-like compounds through dust ingestion and dermal absorption, which is of concern.A glassy carbon electrode (GCE) modified by a hybrid, macroporous carbon (MPC) functionalized with triazine bridged covalent organic polycalix[4]arenes (CalCOP) (CalCOP-MPC), has been fabricated and utilized for simultaneous detection of nitrophenols (NP). The obtained CalCOP-MPC were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), which confirmed that MPC had functionalized with CalCOP successfully. Benefiting from the synergistic supramolecular effect of macrocyclic receptor of CalCOP and the excellent electrical properties of MPC, the anodic peaks of o-nitrophenol (o-NP), m-nitrophenol (m-NP), and p-nitrophenol (p-NP) in their mixture can be well separated by the prepared electrode. Differential pulse voltammetry (DPV) measurements at CalCOP-MPC/GCE revealed that the linear ranges of NP isomers were all 1-400 μM, and the detection limit limits were 0.383 μM, 0.122 μM, and 0.212 μM for o-NP, m-NP, and p-NP, respectively. Moreover, the prepared modified electrodes showed a relatively good selectivity and stability, implying the prospect for detecting NP in real environmental samples.At present, the bioproduction of short-chain fatty acids (SCFAs) from waste activated sludge (WAS) has attracted worldwide attention due to the demand of carbon neutrality during waste treatment. Calcium peroxide (CaO2) has been reported to be an effective method for the solubilization of WAS and the accumulation of SCFAs, but the high reagent cost limits its industrial application. Therefore, free nitrous acid (FNA) was introduced into the WAS pretreatment system to assist with CaO2 for enhancing the disruption of extracellular polymeric substances (EPS) and the subsequent acidogenesis process. The results showed that FNA and CaO2 synergistically enhanced EPS decomposition and the release of biodegradable organic compounds during pretreatment. The highest soluble chemical oxygen demand (3.1- and 2.6-fold higher compared to individual pretreatments at the same concentrations) after pretreatment and the highest SCFAs accumulation (2.0- and 6.4-fold compared to individual pretreatments at the same concentrations) after a 2-day fermentation period was observed in the FNA + CaO2 (0.15 g/g VSS) co-treated group. Therefore, the FNA + CaO2 (0.15 g/g VSS) co-treatment was determined to be the optimal strategy for ensuring the disintegration of the EPS matrix and enhancing the accumulation of SCFAs in pretreated sludge during anaerobic digestion.Municipal solid waste incineration (MSWI) fly ash is a typical hazardous waste worldwide. In this study, an innovative magnesium oxysulfate cement (MOSC) binder was designed for stabilization/solidification (S/S) of MSWI fly ash, focusing on the interactions between MOSC binder and typical metallic cations (Pb2+)/oxyanions (AsO33-). Experimental results showed that Pb and As slightly inhibited the reaction of high-sulfate 5MS system but significantly suppressed the reaction process of low-sulfate 10MS system. The 5MS binder system exhibited excellent immobilization efficiencies (99.8%) for both Pb and As. selleck chemicals llc The extended X-ray absorption fine structure spectra suggested that Pb2+ coordinated with SO42-/OH- in the MOSC system and substituted Mg2+ ion sites in the internal structure of 5Mg(OH)2·MgSO4.7H2O (5-1-7) phase. In contrast, the AsO33- substituted SO42- sites with the formation of inner-sphere complexes with Mg2+ in the large interlayer space of the 5-1-7 structure. Subsequent MSWI fly ash S/S experiments showed that a small amount of reactive Si in MSWI fly ash interfered with the MOSC reaction and adversely influenced the immobilization efficiencies of Pb, As, and other elements. Through the use of 33 wt% tailored MOSC binder for MSWI fly ash treatment, a satisfying S/S performance could be achieved.In this study, an ACC deaminase-producing bacterial strain Achromobacter sp. A1 was isolated from maize rhizosphere soil, characterized and evaluated for the effects on cadmium (Cd) immobilization in solution/rhizosphere, physiological characteristics and the tissue Cd contents in maize and the molecular mechanisms involved by hydroponic and pot experiments. ACC deaminase activity of strain A1 was significantly enhanced by Cd addition and Cd concentration decreased (55.54-63.62%) in solution supplemented with various Cd concentrations. Strain A1 significantly increased the maize dry weights (30.77-105%) and chlorophyll content (7.46-14.46%), decreased MDA content (25.16-36.87%) and ethylene production (20.93-35.86%) in hydroponic experiment. Strain A1 significantly reduced the above-ground tissue Cd uptake by 12.64-33.68% and 42-48% in hydroponic and pot experiments, reduced the DTPA-extractable Cd content and elevated invertase, urease and catalase activity in rhizosphere soils. In addition, the expression levels of Cd transporter genes HMA3 and Nramp5 were significantly reduced in root and shoot after strain A1 inoculation. These results indicate that strain A1 has great potential for application as a novel and environmentally friendly inoculant to immobilize Cd and reduce maize Cd uptake in Cd-contaminated environments, and will improve the understanding of the relative molecular mechanisms underlying the response to strain A1 in maize plant.

Autoři článku: Shoemakerbishop2305 (Thurston Dominguez)