Sherrilladair0200

Z Iurium Wiki

xytocin promotes these changes in cardiorespiratory function. The long-term efficacy and optimal dose of intranasal oxytocin treatment should also be determined in OSA subjects. ClinicalTrials.gov NCT03148899.

Estimation of sleep parameters by wrist actigraphy is highly dependent on performance of the interpretative algorithm (IA) that converts movement data into sleep/wake scores.

(1) Does the actigraphy mode of operation -Proportional Integrating Measure (PIM) or Zero Crossing Mode (ZCM), responsive respectively to intensity and frequency of movements- impact sleep scoring; and (2) Can a better performing sleep scoring IA be developed by a deep learning approach combining PIM/ZCM data.

ZCM and PIM plus electroencephalographic (EEG) data of 40 healthy adults (17 female, mean age 26.7 years) were obtained from a single in-home nighttime sleep study. Effect of mode of operation was first evaluated by applying several classic deep learning models to PIM only, ZCM only, and combined ZCM/PIM data. After, a novel deep learning model was developed incorporating combined ZCM/PIM data, and its performance was compared with existing Cole-Kripke, rescored Cole-Kripke, Sadeh, and UCSD IAs.

Relative to the EEG referencs significantly better in assessing sleep than existing conventional IAs.Erosion-induced soil carbon loss has been identified as a critical process in the global carbon (C) cycle. Surface coverage substantially alters the soil erosion process and the effects of net loss or deposition on soil organic C (SOC). However, information on SOC loss induced by soil erosion at the process level is limited. The aim of this study was to investigate how runoff and erosion regimes affect dissolved and sediment-bound organic C (DOC and SBOC) loss. Thus, six simulated rainfall events were conducted on two laboratory plots (9.75 m × 1.83 m) with different surface coverages (17-83%) and coverage distributions (upslope vs. downslope) using polypropylene geotextiles. The results showed that the variability in the process of runoff and sediment yield existed as a result of altered surface coverage over the erosion zone (SSerosion zone) and covered zone (SScovered zone) on the slope. Thus, the erosion regimes can be identified as deposition- and transport-dominated processes, which were the main soil erosion subprocesses. The surface coverage located downslope (SCtop-bottom slope) can more efficiently reduce runoff (21.9-85.7%) and sediment (67.6-98.3%) than the SCbottom-top slope (runoff 20.1-83.0%; sediment 35.0-93.3%), which has the surface coverage located upslope. DOC (8.0-11.3 mg L-1) and SBOC (0.3-0.5 mg g-1) in the deposition-dominated process on the SCtop-bottom slope were higher than in the transport-dominated process on the SCbottom-top slope (DOC 6.8-10.2 mg L-1; SBOC 0.2-0.3 mg g-1). The loading of DOC and SBOC was largely dependent on runoff and sediment yield, and DOC load contributed 83.9-89.7% of the SOC loss. Overall, laboratory results highlighted the soil C loss at different hydrological and erosion regimes (deposition- vs. transport-dominated process). This study provides important information that can be used to facilitate further implementations such as watershed modeling of soil C dynamics and the corresponding decision-making processes.Human exposure to bisphenol A (BPA) is unavoidable in daily life. Recently, research has showen that BPA could induce oxidative imbalance, thereby causing reproductive toxicity and liver dysfunction. Accumulated evidence has demonstrated that metformin possesses strong anti-oxidative properties. This study aimed to study the mechanism underlying the hepatic-protective effect of metformin on liver injury induced by BPA in rats via the UPLC-MS/MS metabolomics approach. Forty-two male rats were randomly divided into six groups (n = 7), namely the saline group (control), the corn oil group (vehicle), the metformin group (Met), the bisphenol A group (BPA), the bisphenol A and metformin group (BPA + Met), and the bisphenol A and diammonium glycyrrhizinate (positive control) group (BPA + DG). Serum was collected for biochemical analysis and metabolomics, and liver tissue was collected for histopathology and metabolomics in each group. We found that metformin could significantly reduce the levels of liver function enzymes (ALT, AST and GGT) and ameliorate inflammatory cell infiltration and hepatocyte necrosis induced by BPA. On the other hand, metformin could significantly enhance the total antioxidant capacity in BPA rats. Notably, metabolomics data indicated that the principal altered metabolic pathways based on the 26 differential metabolites in liver tissue, and 21 in serum among vehicle, BPA and BPA + Met groups, respectively, including cysteine and methionine metabolism, glutathione metabolism, and arginine biosynthesis and purine metabolism. Additionally, metformin significantly increased cystathionine β synthase (CBS) and cystathionine γ lyase (CSE), thus reducing serum levels of homocysteine and increasing hepatic levels of cysteine and glutathione in BPA-treated rats. Overall, this study's results provided new insights into the role and mechanism of metformin in BPA-induced liver injury in rats.Contaminations by heavy metals in the environment always exist as a mixture of both metal and metalloid. Thus, it is a challenge to simultaneously remove both components due to their adverse chemical behaviors. Herein, effective cadmium (Cd) and arsenic (As) removal in aqueous solution was achieved by use of a novel composite, which was synthesized by Bacillus sp. K1 loaded onto Fe3O4 biochar (MBB). The combination with Bacillus sp. K1 provided new biosorption sites such as amine and hydroxyl groups in the composite surface, which significantly increasing the removal capability of Cd(II) by 230% when compared with the raw magnetic biochar. Both competition and synergy effects were found in binary system. Adsorption of As(III) extended active sites for capturing Cd(II), which appeared on the surface of the MBB as type B ternary surface complexes. The maximum adsorption capacity of Cd(II) and As(III) reached 25.04 and 4.58 mg g-1 in a binary system, respectively. In summary, this environmentally friendly composite is promising for simultaneous Cd(II) and As(III) remediation.The availability of heavy metals in terrestrial environments is largely controlled by their interactions with minerals and organic matter, with iron minerals having a particularly strong role in heavy metal fate. Because soil organic matter contains a variety of compounds that differ in their chemical properties, the underlying impact organic matter-soil mineral associations bestow on heavy metal binding is still unresolved. Here, we systematically examine the binding of Cd, Zn and Ni by a suite of organic-ferrihydrite assemblages, chosen to account for various compound chemistries within soil organic matter. We posited that organic compound functionality would dictate the extent of association with the organic-ferrihydrite assemblages. Increased heavy metal binding to the assemblages was observed and attributed to the introduction of additional binding sites by the organic functional groups with differing metal affinities. The relative increase depended on the metal's Lewis acidity and followed the order Cd > Zn > Ni, whereas the reverse order was obtained for metal binding by pristine ferrihydrite (Ni > Zn > Cd). Citric acid-, aspartic acid- and cysteine-ferrihydrite assemblages also enhanced the metal binding rate. X-ray absorption spectroscopy revealed that the organic coating contributed significantly to Zn binding by the assemblages, despite relatively low organic surface coverage. Our findings provide valuable information on the nature of heavy metal-organic-mineral interactions and metal adsorption processes regulating their bioavailability and transport.Rapid urbanization increasingly influences ecosystem stability and regional urban sustainability. Pan-Third Pole cities located in high-altitude regions around the Tibetan Plateau, Pamir, and Indo Kush have experienced rapid urbanization during the last few decades; however, an understanding of the urbanization rate and its driving mechanism remains lacking. Here, we investigate the urban land transformation dynamics of 14 major Pan-Third Pole cities and analyse their driving factors over two periods (2000-2010 and 2010-2017) based on the interpretation of historical Google Earth imagery using deep learning techniques. Our results show that the urbanized area has increased from 2809 km2 to 4380 km2, with an annual growth rate of nearly 3% during 2000-2017, which is probably the largest increase in the world. The analysis of potential driving factors reveals that population growth dominates urban expansion, elevation is a constrained topographical factor, and neighbourhoods to roads facilitate urbanization. Our findings would benefit policy making for urban sustainability in the most fragile region on Earth.This paper reports the results obtained for microwave-assisted catalytic fast pyrolysis (MACFP) of rice husk. The MACFP process employed a hierarchical catalyst prepared via a combination of organic alkali treatment (TPAOH) and the generation of an external layer of MCM-41-type mesoporous channels. We propose this catalyst which is used for the first time for pyrolysis of lignocellulosic biomass, as a tool to reduce coke agglomeration and increase hydrocarbon yields. Our results indicate that during catalyst preparation the mass fraction of cetyltrimethylammonium bromide (CTAB) has a direct effect on the content of MCM-41 formed on top of the HZSM-5 core. For MACFP, we hypothesize that the small molecules generated from thermal decomposition of rice husk react further to form aromatic and aliphatic hydrocarbons by decarbonylation, decarboxylation, oligomerization and aromatization. The highest hydrocarbon yield (60.5%) was obtained for a catalyst modified by a 2.0 mol/L TPAOH solution, with 10 wt% of CTAB (template for producing MCM-41), as well as with digestion and crystallization at 110 °C for 24 h. In addition, the highest liquid yield (47.6 wt%) was obtained at 550 °C. The relative content of hydrocarbons goes through a maximum of 60.5% with CTAB mass fraction which was higher than values obtained with MCM-41 (3.2%) and HZSM-5 (36.0%). Characterization and catalytic testing results suggest that the digestion temperature plays a more important role in the catalyst synthesis than the crystallization temperature. High digestion temperature (120 °C) decreases the overall hydrocarbon selectivity from 60.5% (110 °C) to 39.2%. The relative content of oxygenates reached the lowest value of 35.9% at the digestion and crystallization temperature of 110 °C. The synergistic effect of the MCM-41 shell and the HZSM-5 core promotes the catalytic activity, leading to outstanding deoxygenation capabilities and excellent selectivity to BTEX (52.7%).In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.

Autoři článku: Sherrilladair0200 (Mead Juhl)