Sheppardhouston5515
Meningiomas are the most common primary intracranial tumor. Recent next generation sequencing analyses have elaborated the molecular drivers of this disease. We aimed to identify and characterize novel fusion genes in meningiomas.
We performed a secondary analysis of our RNA sequencing data of 145 primary meningioma from 140 patients to detect fusion genes. Semi-quantitative rt-PCR was performed to confirm transcription of the fusion genes in the original tumors. Whole exome sequencing was performed to identify copy number variations within each tumor sample. Comparative RNA seq analysis was performed to assess the clonality of the fusion constructs within the tumor.
We detected six fusion events (NOTCH3-SETBP1, NF2-SPATA13, SLC6A3-AGBL3, PHF19-FOXP2 in two patients, and ITPK1-FBP2) in five out of 145 tumor samples. All but one event (NF2-SPATA13) led to extremely short reading frames, making these events de facto null alleles. Three of the five patients had a history of childhood radiation. Four out of six fusion events were detected in expression type C tumors, which represent the most aggressive meningioma. We validated the presence of the RNA transcripts in the tumor tissue by semi-quantitative RT PCR. All but the two PHF19-FOXP2 fusions demonstrated high degrees of clonality.
Fusion genes occur infrequently in meningiomas and are more likely to be found in tumors with greater degree of genomic instability (expression type C) or in patients with history of cranial irradiation.
Fusion genes occur infrequently in meningiomas and are more likely to be found in tumors with greater degree of genomic instability (expression type C) or in patients with history of cranial irradiation.With the outbreak of COVID-19 ongoing, this infectious disease has been posing a significant threat to public health. However, we are still relatively inexperienced on recognizing the clinical characteristics of severe COVID-19 and death cases. Therefore, we hereby collected and analyzed a total of 232 cases to illustrate the clinical characteristics of such patients in Wuhan and to find notable marks for early clinical warning. We consider age, comorbidities, platelet count, albumin, D-dimer, LDH, CRP and IL-6 level might be more meaningful marks for COVID-19 prognostic evaluation.In this study, two endophytic bacterial strains designated JS21-1T and S6-262T isolated from leaves of Elaeis guineensis and stem tissues of Jatropha curcas respectively, were subjected for polyphasic taxonomic approach. On R2A medium, colonies of strains JS21-1T and S6-262T are orange and yellow, respectively. Phylogenetic analyses using 16S rRNA gene sequencing and whole-genome sequences placed the strains in distinct clades but within the genus Sphingomonas. BMS-794833 datasheet The DNA G + C content of JS21-1T and S6-262T were 67.31 and 66.95%, respectively. Furthermore, the average nucleotide identity and digital DNA-DNA hybridization values of strains JS21-1T and S6-262T with phylogenetically related Sphingomonas species were lower than 95% and 70% respectively. The chemotaxonomic studies indicated that the major cellular fatty acids of the strain JS21-1T were summed feature 8 (C181 ω7c and/or C181 ω6c), C160, and C140 2OH; strain S6-262T possessed summed feature 3 (C161 ω7c and/or iso-C150 2-OH) and summed feature 8 (C181 ω6c and/or C181 ω7c). The major quinone was Q10, and the unique polyamine observed was homospermidine. The polar lipid profile comprised of mixture of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and certain uncharacterised phospholipids and lipids. Based on this polyphasic evidence, strains JS21-1T and S6-262T represent two novel species of the genus Sphingomonas, for which the names Sphingomonas palmae sp. nov. and Sphingomonas gellani sp. nov. are proposed, respectively. The type strain of Sphingomonas palmae sp. nov. is JS21-1T (= DSM 27348T = KACC 17591T) and the type strain of Sphingomonas gellani sp. nov. is S6-262T (= DSM 27346T = KACC 17594T).The nucleus pulposus (NP) in the intervertebral disk (IVD) depends on diffusive fluid transport for nutrients through the cartilage endplate (CEP). Disruption in fluid exchange of the NP is considered a cause of IVD degeneration. Furthermore, CEP calcification and sclerosis are hypothesized to restrict fluid flow between the NP and CEP by decreasing permeability and porosity of the CEP matrix. We performed a finite element analysis of an L3-L4 lumbar functional spine unit with poro-elastic constitutive equations. The aim of the study was to predict changes in the solid and fluid parameters of the IVD and CEP under structural changes in CEP. A compressive load of 500 N was applied followed by a 10 Nm moment in extension, flexion, lateral bending, and axial rotation to the L3-L4 model with fully saturated IVD, CEP, and cancellous bone. A healthy case of L3-L4 physiology was then compared to two cases of CEP sclerosis a calcified cartilage endplate and a fluid constricted sclerotic cartilage endplate. Predicted NP fluid velocity increased for the calcified CEP and decreased for the calcified + less permeable CEP. Decreased NP fluid velocity was prominent in the axial direction through the CEP due to a less permeable path available for fluid flux. Fluid pressure and maximum principal stress in the NP were predicted to increase in both cases of CEP sclerosis compared to the healthy case. The porous medium predictions of this analysis agree with the hypothesis that CEP sclerosis decreases fluid flow out of the NP, builds up fluid pressure in the NP, and increases the stress concentrations in the NP solid matrix.Understanding the genetic diversity and relationships between genotypes is an effective step in designing effective breeding programs. Insertional polymorphisms of retrotransposons were studied in 75 cultivated and wild grape genotypes using retrotransposon-microsatellite amplified polymorphism (REMAP) technique. In the morphological part of work, seven pomological traits with a high breeding interest were also analyzed in the cultivated genotypes. A total of 328 markers were produced by 42 primer pairs, out of which 313 markers (95.43%) were polymorphic. Number of markers ranged from 4 in loci Tvv1Fa-873, Vine1-811, Gret1Ra-855 and Tvv1Fa-890 to 12 in locus Vine1Ra-841 with an average value of 7.45. Similarity values based on Dice's coefficient among all 75 grapevine genotypes varied from 0.41 to 0.77. Classification of genotypes using unweighted pair-group method using complete-linkage clustering led to six distinct groups. Some wild and cultivated varieties placed in the same groups. It seems there are close relationship between wild and cultivated genotypes and maybe wild genotypes are ancestor of native grapevines.