Shepardsosa6562
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration. © The author(s).Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome. © The Author(s) 2020.Background Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches that employ NGS sequencing, the relative abundance of integrations within a complex mixture is typically determined through the use of read counts or unique fragment lengths from a ligation of sheared DNA; however, these estimates may be skewed by PCR amplification biases and saturation of sequencing coverage. Results Here we describe a modification of our previous splinkerette based ligation-mediated PCR using a novel Illumina-compatible adapter design that prevents amplification of non-target DNA and incorporates unique molecular identifiers. This design reduces the number of PCR cycles required and improves relative quantitation of integration abundance for saturating sequencing coverage. By inverting the forked adapter strands from a standard orientation, the integration-genome junction cae reproducible distinction of clonal and subclonal integration sites from each other allows for analysis of populations of cells undergoing selection, such as those found in insertional mutagenesis screens. © The Author(s). 2020.Background Human data supporting a role for endoplasmic reticulum (ER) stress and calcium dyshomeostasis in diabetes is scarce. Darier disease (DD) is a hereditary skin disease caused by mutations in the ATP2A2 gene encoding the sarcoendoplasmic-reticulum ATPase 2 (SERCA2) calcium pump, which causes calcium dyshomeostasis and ER stress. We hypothesize that DD patients have a diabetes-like metabolic phenotype and the objective of this study was to examine the association between DD with impaired glucose tolerance and diabetes. Methods Cross-sectional clinical study on 25 DD patients and 25 matched controls. Metabolic status was assessed primarily by fasting blood glucose, oral glucose tolerance test, HOMA2-%S (insulin resistence) and HOMA2-%B (beta cell function). Results DD subjects showed normal oral glucose tolerance test and HOMA2-%S, while fasting blood glucose was lower and c-peptide as well as HOMA2-%B was higher. Conclusion Increased HOMA2-%B values are indicative of increased basal insulin secretion which is a type of beta cell dysfunction associated to diabetes development. These results supports a role of ER stress in diabetes pathophysiology and contribute to the understanding of DD as a multi-organ syndrome. © The Author(s) 2020.Background The primary objective of our study was to determine which factors influence health literacy (HL) in patients with type 1 diabetes (T1D) and type 2 diabetes (T2D), and the secondary one was to evaluate the influence of HL on glycemic control. Methods This was an observational, cross-sectional study with 347 patients (144 with T1D and 203 with T2D), conducted between December 2014/December 2017. Data were obtained from medical records and/or questionnaire. The short test of Functional Health Literacy (S-TOFHLA) was used to evaluate HL. Results Age and years of school attendance were the most important variables associated with better performance in S-TOFHLA mainly in patients with T1D. A correlation between age and years of school attendance with S-TOFHLA score was observed in both groups of patients. After an unadjusted analysis, more patients with T1D presented adequate HL [119 (82.6%) vs 87 (44.8%, p less then 0.001)]. Patients with T1D had higher scores than patients with T2D (84.4 ± 21.4 vs 61.6 ± 26.8 points, p less then 0.001), respectively. This difference did not persist after adjustment for age and years of school attendance (73.04 ± 2.14 ± vs 70.04 ± 1.76 points) respectively, p = 0.348). No difference was found in HbA1c levels according to S-TOFHLA. All patients with T1D and HbA1c levels less then 7.0% (53 mmol/mol) had adequate HL. Oxalacetic acid supplier Conclusions A considerable number of patients with either T1D or T2D did not have adequate HL. Overall, age and years of school attendance were the most important variables associated with better performance of S-TOFHLA. Although no difference was found in HbA1c levels according to S-TOFHLA, patients with T1D who self-reported as White, with more years of school attendance, and higher HL score reached more frequently a good glycemic control. Finally, in addition to therapeutic regimens, approaches on diabetes management should also include patients' HL evaluation along with psychological and social aspects. © The Author(s) 2020.Objectives Recent years have witnessed a shift from invasive methods of prenatal screening to non-invasive strategies. Accordingly, non-invasive prenatal testing (NIPT) using cell-free fetal DNA in maternal plasma has gained a considerable deal of interest from both geneticists and obstetricians. Efficacy of this method in identification of common aneuploidies has been extensively assessed in singleton pregnancies. However, a limited number of studies have addressed the twin pregnancies. In this context, the present study is aimed at identification of the efficacy of NIPT in twin pregnancies. Methods NIPT was performed on twin pregnancies to screen trisomies 13, 18 and 21. Pregnant women referring to Nilou Clinical Laboratory between March 2016 and December 2018 were included in this research. Results In the current study, a total 356 twin pregnancies were screened in search for trisomies 13, 18 and 21. 6 cases exhibited positive NIPT results in which the presence of trisomies 13, 18 and 21 was confirmed by fetal karyotype in 1, 2 and 2 cases, respectively. One twin pregnancy showed normal karyotype. The combined false-positive rate for these trisomies was 0.28%. No false negative case was observed. The combined sensitivity and specificity of NIPT in twin pregnancies were 100 and 99.7%, respectively. Conclusion The results of the current study verify the feasibility, sensitivity and specificity of NIPT in twin pregnancies. © The Author(s). 2020.Objectives To observe the effect of avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. Background Percutaneous transluminal coronary angioplasty (PTCA) is currently the preferred method for the treatment of coronary heart disease. However, vascular restenosis still occurs after PTCA treatment, severely affecting the clinical efficacy of PTCA. Integrin avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. Methods In this experiment, we used systematic evolution of ligands by exponential enrichment (SELEX) to screen out avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. Results In the present study, we found that avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. P less then 0.05). Avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. P less then 0.05). AvP less then 0.05). Av. Conclusions The findings suggest that avβ3 ssDNA inhibited the proliferation and migration of VSMCs by suppressing the activation of Ras-PI3K/MAPK signaling.β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. Copyright © 2020 Hong-Bing Wu et al.Background With the increasing incidence of colorectal cancer (CRC), its accurate diagnosis is critical and in high demand. However, conventional methods are not ideal due to invasiveness and low accuracy. Herein, we aimed to identify efficient CRC mRNA markers in a non-invasive manner using CRC-derived extracellular vesicles (EVs). The expression levels of EV mRNAs from cancer cell lines were compared with those of a normal cell line using quantitative polymerase chain reaction. Eight markers were evaluated in plasma EVs from CRC patients and healthy controls. The diagnostic value of each marker, individually or in combination, was then determined using recessive operating characteristics analyses and the Mann-Whitney U test. Results Eight mRNA markers (MYC, VEGF, CDX2, CD133, CEA, CK19, EpCAM, and CD24) were found to be more abundant in EVs derived from cancer cell lines compared to control cell lines. A combination of VEGF and CD133 showed the highest sensitivity (100%), specificity (80%), and accuracy (93%) and an area under the curve of 0.