Sheehanhahn1352

Z Iurium Wiki

The coronavirus disease 2019 (COVID-19) spreads and rages around the world and threatens human life. It is disappointing that there are no specific drugs until now. The combination of traditional Chinese medicine (TCM) and western medication seems to be the current more effective treatment strategy for COVID-19 patients in China. In this review, we mainly discussed the relationship between COVID-19 and gut microbiota (GM), as well as the possible impact of TCM combined with western medication on GM in the treatment of COVID-19 patients, aiming to provide references for the possible role of GM in TCM against COVID-19. The available data suggest that GM dysbiosis did occur in COVID-19 patients, and the intervention of GM could ameliorate the clinical condition of COVID-19 patients. In addition, TCMs (e.g., Jinhua Qinggan granule, Lianhua Qingwen capsule, Qingfei Paidu decoction, Shufeng Jiedu capsule, Qingjin Jianghuo decoction, Toujie Quwen granules, and MaxingShigan) have been proven to be safe and effective for the treatment of COVID-19 in Chinese clinic. Among them, Ephedra sinica, Glycyrrhiza uralensis, Bupleurum chinense, Lonicera japonica,Scutellaria baicalensi, and Astragalus membranaceus are common herbs and have a certain regulation on GM, immunity, and angiotensin converting enzyme 2 (ACE2). Notably, Qingfei Paidu decoction and MaxingShigan have been demonstrated to modulate GM. Finally, the hypothesis of GM-mediated TCM treatment of COVID-19 is proposed, and more clinical trials and basic experiments need to be initiated to confirm this hypothesis.Barbara Gillespie Pickard (1936-2019) studied plant electrophysiology and mechanosensory biology for more than 50 y. Her first papers on the roles of auxin in plant tropisms were coauthored with Kenneth V. Thimann. Later, she studied plant electrophysiology. She made it clear that plant action potentials are not a peculiar feature of so-called sensitive plants, but that all plants exhibit these fast electric signals. Barbara Gillespie Pickard proposed a neuronal model for the spreading of electric signals induced by mechanical stimuli across plant tissues. In later years, she studied the stretch-activated plasma membrane channels of plants and formulated the plasma-membrane control center model. Barbara Pickard summarized all her findings in a new model of phyllotaxis involving waves of auxin fluxes and mechano-sensory signaling.

To examine the ablation zone, muscle contractions, and temperature increases in both rabbit liver and kidney models

for a custom-made high-frequency irreversible electroporation (H-FIRE) generator.

A total of 18 New Zealand white rabbits were used to investigate five H-FIRE protocols (

 = 3 for each protocol) and an IRE protocol (

 = 3) for the performance of the designed H-FIRE device in both liver and kidney tissues. The ablation zone was determined by using histological analysis 72 h after treatment. The extent of muscle contractions and temperature change during the application of pulse energy were measured by a commercial accelerometer attached to animals and fiber optic temperature probe inserted into organs with IRE electrodes, respectively.

All H-FIRE protocols were able to generate visible ablation zones without muscle contractions, for both liver and kidney tissues. The area of ablation zone generated in H-FIRE pulse protocols (e.g., 0.3-1 μs, 2000 V, and 90-195 bursts) appears similar to that of IRE protocol (100 μs, 1000 V, and 90 pulses) in both liver and kidney tissues. No significant temperature increase was noticed except for the protocol with the highest pulse energy (e.g., 1 μs, 2000 V, and 180 bursts).

Our work serves to complement the current H-FIRE pulse waveforms, which can be optimized to significantly improve the quality of ablation zone in terms of precision for liver and kidney tumors in clinical setting.

Our work serves to complement the current H-FIRE pulse waveforms, which can be optimized to significantly improve the quality of ablation zone in terms of precision for liver and kidney tumors in clinical setting.As an independent scientific visualizer I tackle a wide range of subjects for my clients. But my heart lies with animal anatomy.Introduction Eisenmenger syndrome describes a condition in which a congenital heart defect has caused severe pulmonary vascular disease, resulting in reversed (right-left) or bidirectional shunting and chronic cyanosis.Areas covered In this paper, the progression of congenital heart defects to Eisenmenger syndrome, including early screening, diagnosis and operability are covered. The mechanisms of disease progression in Eisenmenger syndrome and management strategies to combat this, including the role of pulmonary arterial hypertension therapies, are also discussed.Expert opinion/commentary Patients with congenital heart disease (CHD) are at increased risk of developing pulmonary arterial hypertension with Eisenmenger syndrome being its extreme manifestation. All CHD patients should be regularly assessed for pulmonary hypertension. Once Eisenmenger syndrome develops, shunt closure should be avoided. The clinical manifestations of Eisenmenger syndrome are driven by the systemic effects of the pulmonary hypertension, congenital defect and long-standing cyanosis. Expert care is essential for avoiding pitfalls and preventing disease progression in this severe chronic condition, which is associated with significant morbidity and mortality. Pulmonary arterial hypertension therapies have been used alongside supportive care to improve the quality of life, exercise tolerance and the outcome of these patients, although the optimal timing for their introduction and escalation remains uncertain.

Alternating magnetic field (AMF) tissue interaction models are generally not validated. Our aim was to develop and validate a coupled electromagnetic and thermal model for estimating temperatures in large organs during magnetic nanoparticle hyperthermia (MNH).

Coupled finite element electromagnetic and thermal model validation was performed by comparing the results to experimental data obtained from temperatures measured in homogeneous agar gel phantoms exposed to an AMF at fixed frequency (155 ± 10 kHz). https://www.selleckchem.com/products/gdc-0068.html The validated model was applied to a three-dimensional (3D) rabbit liver built from computed tomography (CT) images to investigate the contribution of nanoparticle heating and nonspecific eddy current heating as a function of AMF amplitude.

Computed temperatures from the model were in excellent agreement with temperatures calculated using the analytical method (error < 1%) and temperatures measured in phantoms (maximum absolute error <2% at each probe location). The 3D rabbit liver model for a fixed concentration of 5 mg Fe/cm

of tumor revealed a maximum temperature ∼44 °C in tumor and ∼40 °C in liver at AMF amplitude of ∼12 kA/m (peak).

Autoři článku: Sheehanhahn1352 (Christian Stensgaard)