Sheajamison2365
elopment of these approaches. With the knowledge provided in this study on the nitrogen preferences of Starm. bacillaris, winemakers will be able to set up a nitrogen nutrition scheme adapted to the requirement of each species during mixed fermentation, through must supplementation with relevant nitrogen compounds. This will prevent nitrogen depletion or competition between yeasts for nitrogen sources, and consequently potential issues during fermentation. The data of this study highlight the importance of an appropriate nitrogen resource management during co- or sequential fermentation for fully exploiting the phenotypic potential of non-Saccharomyces yeasts.Vibrio cholerae, the agent of the deadly human disease cholera, propagates as a curved rod-shaped bacterium in warm waters. It is sensitive to cold, but persists in cold waters under the form of viable but non-dividing coccoidal shaped cells. Additionally, V. cholerae is able to form non-proliferating spherical cells in response to cell wall damage. It was recently reported that L-arabinose, a component of the hemicellulose and pectin of terrestrial plants, stops the growth of V. cholerae. Here, we show that L-arabinose induces the formation of spheroplasts that lose the ability to divide and stop growing in volume over time. However, they remain viable and upon removal of L-arabinose they start expanding in volume, form branched structures and give rise to cells with a normal morphology after a few divisions. We further show that WigKR, a histidine kinase/response regulator pair implicated in the induction of a high expression of cell wall synthetic genes, prevents the lysis of the spheroplasts during growthble spheroplasts. Indeed, the quick transition to spheroplasts and reversion to proliferating rods by addition or removal of L-Ara is ideal to understand the genetic program governing this physiological state and the spatial rearrangements of the cellular machineries during cell shape transitions.Carbohydrate-binding modules (CBMs) are usually appended to carbohydrate-active enzymes (CAZymes) and serve to potentiate catalytic activity, e.g. by increasing substrate affinity. The Gram-negative soil saprophyte Cellvibrio japonicus is valuable source for CAZyme and CBM discovery and characterization, due to its innate ability to degrade a wide array of plant polysaccharides. Bioinformatic analysis of the CJA_2959 gene product from C. japonicus revealed a modular architecture consisting of a fibronectin type III (Fn3) module, a cryptic module of unknown function ("X181"), and a Glycoside Hydrolase Family 5 subfamily 4 (GH5_4) catalytic module. We previously demonstrated that the last of these, CjGH5F, is an efficient and specific endo-xyloglucanase [Attia et al. 2018. Biotechnol. Biofuels, 11 45]. In the present study, C-terminal fusion of superfolder green fluorescent protein in tandem with the Fn3-X181 modules enabled recombinant production and purification from Escherichia coli Native affinity gel electeta)genome analysis and functional studies.Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotropthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of Smarinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly umical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Drug resistance poses a serious threat to human health and agricultural production. Azole drugs are the largest group of 14-α sterol demethylation inhibitor fungicides that are used both in agriculture and in clinical practice. As plant pathogenic molds share their natural environment with fungi that cause opportunistic infections in humans, both are exposed to a strong and persistent pressure of demethylase inhibitor (DMI) fungicides, including imidazole and triazole drugs. As a result, a loss of efficacy has occurred for this drug class in several species. In the clinical setting, Aspergillus fumigatus azole resistance is a growing public health problem and finding the source of this resistance has gained much attention. It is urgent to determine if there is a direct link between the agricultural use of azole compounds and the different A. fumigatus resistance mechanisms described for clinical triazoles. In this work we have performed A. fumigatus susceptibility testing to clinical triazoles and crop protecand whether A. fumigatus azole resistance is emerging from an agricultural source due to the extended use of demethylase inhibitors as fungicides, or whether it is coming from somewhere else such as the clinical setting. If the environmental route is demonstrated, the current use and management of azole antifungal compounds might be forced to change in the forthcoming years.This study selected and used indicator and surrogate microorganisms for Salmonella to validate the processes for physically heat-treated poultry litter compost in litter processing plants. Initially laboratory validation studies indicated that 1.2- to 2.7-log or more reductions of desiccation-adapted Enterococcus faecium NRRL B-2354 were equivalent to > 5-log reductions of desiccation-adapted Salmonella Senftenberg 775/W in poultry litter compost, depending on treatment conditions and compost types. Plant validation studies were performed in one turkey litter compost processor and one laying hen litter compost processor. E. faecium was inoculated at ca.7 log CFU g-1 into the turkey litter compost and at ca. 5 log CFU g-1 into laying hen litter compost with respectively targeted moisture contents. The thermal processes in the two plants yielded 2.8 - > 6.4 log CFU g-1 (> 99.86%) reductions E. faecium of the inoculated. Similarly, for the processing control samples, reductions of presumptive indigenous enteroco standard requirement. To the best of our knowledge, this is the first validation study in commercial poultry litter compost processing plants, and our results indicated that Salmonella levels, if present, could be reduced by at least 5 logs based on the reductions of surrogate and indicator microorganisms, even though the processing conditions in these commercial plants varied greatly. Furthermore, both indicator and surrogate microorganisms along with the custom-designed sampler can serve as practical tools for poultry litter compost processors to routinely monitor or validate their thermal processes without introducing pathogens into the industrial environments.Endospore formation is used by members of the phylum Firmicutes to withstand extreme environmental conditions. Several recent studies have proposed endospore formation in species outside of Firmicutes, particularly in Rhodobacter johrii and Serratia marcescens, members of the phylum Proteobacteria. Here, we aimed to investigate endospore formation in these two species by using advanced imaging and analytical approaches. Examination of the phase-bright structures observed in R. johrii and S. marcescens using cryo-electron tomography failed to identify endospores or stages of endospore formation. Mizagliflozin SGLT inhibitor We determined that the phase-bright objects in R. johrii cells were triacylglycerol storage granules and those in S. marcescens were aggregates of cellular debris. In addition, R. johrii and S. marcescens containing phase-bright objects do not possess phenotypic and genetic features of endospores, including enhanced resistance to heat, presence of dipicolinic acid, or the presence of many of the genes associated with endospore formation. Our results support the hypothesis that endospore formation is restricted to the phylum Firmicutes.Importance Bacterial endospore formation is an important process that allows the formation of dormant life forms called spores. As such, organisms able to sporulate can survive harsh environmental conditions for hundreds of years. Here, we follow up on previous claims that two members of Proteobacteria, Serratia marcescens and Rhodobacter johrii, are able to form spores. We conclude that those claims were incorrect and show that the putative spores in R. johrii and S. marcescens are storage granules and cellular debris, respectively. This study concludes that endospore formation is still unique to the phylum Firmicutes.Currently only five (SEA-SEE) out of 27 known staphylococcal enterotoxins can be analyzed using commercially available kits.Six genes (seg, sei, sem, sen, seo, and seu), encoding putative and undetectable enterotoxins, are located on the enterotoxin gene cluster (egc) which is part of the Staphylococcus aureus genomic island vSaβ. These enterotoxins have been described as likely being involved in staphylococcal food poisoning outbreaks.The aim of the present study was to determine if whole genome data can be used for the prediction of staphylococcal egc enterotoxin production, particularly enterotoxin G (SEG) and enterotoxin I (SEI). For this purpose whole genome sequences of 75 Staphylococcus aureus (S. aureus) strains from different origins (food poisoning outbreaks, human, and animal) were investigated applying bioinformatics methods (phylogenetic analysis using the core genome and different alignments). SEG and SEI expression was tested in vitro using a sandwich ELISA method.Strains could be allocated to 14 different vSaβ types, each type being associated with a single clonal complex (CC).