Shawwise9530

Z Iurium Wiki

According to the active systems consolidation theory, memories undergo reactivation during sleep that can give rise to qualitative changes of the representations. These changes may generate new knowledge such as gaining insight into solutions for problem solving. targeted memory reactivation (TMR) uses learning-associated cues, such as sounds or odors, which have been shown to improve memory consolidation when re-applied during sleep. Here we tested whether TMR during slow wave sleep (SWS) and/or rapid eye movement (REM) sleep increases problem solving. Young healthy volunteers participated in one of two experiments. Experiment 1 tested the effect of natural sleep on problem solving. Subjects were trained in a video game-based problem solving task until being presented with a non-solved challenge. Followed by a ~10-h incubation interval filled with nocturnal sleep or daytime wakefulness, subjects were tested on the problem solving challenge again. Experiment 2 tested the effect of TMR on problem solving, with subjects receiving auditory TMR either during SWS (SWSstim), REM sleep (REMstim), or wakefulness (Wakestim). In Experiment 1, sleep improved problem solving, with 62% of subjects from the Sleep group solving the problem compared to 24% of the Wake group. Subjects with higher amounts of SWS in the Sleep group had a higher chance to solve the problem. In Experiment 2, TMR did not change the sleep effect on problem solving 56 and 58% of subjects from the SWSstim and REMstim groups solved the problem compared to 57% from the Wakestim group. These findings indicate that sleep, and particularly SWS, facilitates problem solving, whereas this effect is not further increased by TMR.Mild traumatic brain injury (TBI) results in chronic affective disorders such as depression, anxiety, and fear that persist up to years following injury and significantly impair the quality of life for patients. Although a great deal of research has contributed to defining symptoms of mild TBI, there are no adequate drug therapies for brain-injured individuals. Preclinical studies have modeled these deficits in affective behaviors post-injury to understand the underlying mechanisms with a view to developing appropriate treatment strategies. These studies have also unveiled sex differences that contribute to the varying phenotypes associated with each behavior. Although clinical and preclinical studies have viewed these behavioral deficits as separate entities with unique neurobiological mechanisms, mechanistic similarities suggest that a novel approach is needed to advance research on drug therapy. This review will discuss the circuitry involved in the expression of deficits in affective behaviors following mild TBI in humans and animals and provide evidence that the manifestation of impairment in these behaviors stems from an amygdala-dependent emotional processing deficit. It will highlight mechanistic similarities between these different types of affective behaviors that can potentially advance mild TBI drug therapy by investigating treatments for the deficits in affective behaviors as one entity, requiring the same treatment.Cue-evoked persistent activity is neural activity that persists beyond stimulation of a sensory cue and has been described in many regions of the brain, including primary sensory areas. Nonetheless, the functional role that persistent activity plays in primary sensory areas is enigmatic. However, one form of persistent activity in a primary sensory area is the representation of time between a visual stimulus and a water reward. This "reward timing activity"-observed within the primary visual cortex-has been implicated in informing the timing of visually cued, reward-seeking actions. Although rewarding outcomes are sufficient to engender interval timing activity within V1, it is unclear to what extent cue-evoked persistent activity exists outside of reward conditioning, and whether temporal relationships to other outcomes (such as behaviorally neutral or aversive outcomes) are able to engender timing activity. Here we describe the existence of cue-evoked persistent activity in mouse V1 following three conditiotent activity within V1 can exist outside of conditioning visual stimuli with delayed outcomes and that this persistent activity can be uniquely modulated across different conditioning strategies using unconditioned stimuli of varying behavioral relevance. Together, these data extend our understanding of cue-evoked persistent activity within a primary sensory cortical network and its ability to be modulated by salient outcomes.Dopamine (DA) modulates the activity of nuclei within the ascending and descending auditory pathway. Previous studies have identified neurons and fibers in the inferior colliculus (IC) which are positively labeled for tyrosine hydroxylase (TH), a key enzyme in the synthesis of dopamine. However, the origins of the tyrosine hydroxylase positive projections to the inferior colliculus have not been fully explored. The lateral lemniscus (LL) provides a robust inhibitory projection to the inferior colliculus and plays a role in the temporal processing of sound. In the present study, immunoreactivity for tyrosine hydroxylase was examined in animals with and without 6-hydroxydopamine (6-OHDA) lesions. Lesioning, with 6-OHDA placed in the inferior colliculus, led to a significant reduction in tyrosine hydroxylase immuno-positive labeling in the lateral lemniscus and inferior colliculus. Immunolabeling for dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT), enzymes responsible for the syase colocalization within the lateral lemniscus was assessed. The dorsal and intermediate nuclei neurons exhibiting similar degrees of colocalization, while neurons of the ventral nucleus had significantly fewer colocalized fluorogold-tyrosine hydroxylase labeled neurons. These results suggest that several auditory nuclei that project to the inferior colliculus contain dopamine, dopaminergic neurons in the lateral lemniscus project to the inferior colliculus and that dopaminergic neurotransmission is poised to play a pivotal role in the function of the inferior colliculus.This review focuses on the neuronal and circuit mechanisms involved in the generation of the theta (θ) rhythm and of its participation in behavior. Data have accumulated indicating that θ arises from interactions between medial septum-diagonal band of Broca (MS-DbB) and intra-hippocampal circuits. The intrinsic properties of MS-DbB and hippocampal neurons have also been shown to play a key role in θ generation. A growing number of studies suggest that θ may represent a timing mechanism to temporally organize movement sequences, memory encoding, or planned trajectories for spatial navigation. To accomplish those functions, θ and gamma (γ) oscillations interact during the awake state and REM sleep, which are considered to be critical for learning and memory processes. Further, we discuss that the loss of this interaction is at the base of various neurophatological conditions.Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes-elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. Chitosan oligosaccharide The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.A presynaptic protein closely related to Parkinson's disease (PD), α-synuclein (α-Syn), has been studied extensively regarding its pathogenic mechanisms. As a physiological protein in presynapses, however, α-Syn's physiological function remains unclear. Its location in nerve terminals and effects on membrane fusion also imply its functional role in synaptic transmission, including its possible interaction with high-curvature membranes via its N-terminus and amorphous C-terminus. PD-related mutants that disrupt the membrane interaction (e.g., A30P and G51D) additionally suggest a relationship between α-Syn's pathogenic mechanisms and physiological roles through the membrane binding. Here, we summarize recent research on how α-Syn and its variants interact with membranes and influence synaptic transmission. We list several membrane-related connections between the protein's physiological function and the pathological mechanisms that stand to expand current understandings of α-Syn.Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.Transcriptionally profiling minor cellular populations remains an ongoing challenge in molecular genomics. Single-cell RNA sequencing has provided valuable insights into a number of hypotheses, but practical and analytical challenges have limited its widespread adoption. A similar approach, which we term single-cell type RNA sequencing (sctRNA-seq), involves the enrichment and sequencing of a pool of cells, yielding cell type-level resolution transcriptomes. While this approach offers benefits in terms of mRNA sampling from targeted cell types, it is potentially affected by off-target contamination from surrounding cell types. Here, we leveraged single-cell sequencing datasets to apply a computational approach for estimating and controlling the amount of off-target cell type contamination in sctRNA-seq datasets. In datasets obtained using a number of technologies for cell purification, we found that most sctRNA-seq datasets tended to show some amount of off-target mRNA contamination from surrounding cells. However, using covariates for cellular contamination in downstream differential expression analyses increased the quality of our models for differential expression analysis in case/control comparisons and typically resulted in the discovery of more differentially expressed genes.

Autoři článku: Shawwise9530 (Yang Rossen)