Sharmarichard9070
4 and 68.7%, respectively. On the other hand, our proposed unsupervised learning model based on the integration of descriptor-relevance analysis and a Gaussian mixture model achieved an accuracy and recall score of 72.9 and 82.1%, respectively, which are significantly better than those of the supervised models. While capturing and interpreting the structure-stability relationship of the Nd-Fe-B crystal structures, the unsupervised learning model indicates that the average atomic coordination number and coordination number of the Fe sites are the most important factors in determining the phase stability of the new substituted Nd-Fe-B crystal structures.Protein dimerization or oligomerization resulting from swapping part of the protein between neighboring polypeptide chains is known to play a key role in the regulation of protein function and in the formation of protein aggregates. Glutaredoxin-1 from Clostridium oremlandii (cGrx1) was used as a model to explore the formation of multiple domain-swapped conformations, which were made possible by modulating several hinge-loop residues that can form a pivot for domain swapping. Specifically, two alternative domain-swapped structures were generated and analyzed using nuclear magnetic resonance (NMR), X-ray crystallography, circular-dichroism spectroscopy and hydrogen/deuterium-exchange (HDX) mass spectrometry. The first domain-swapped structure (β3-swap) was formed by the hexameric cGrx1-cMsrA complex. The second domain-swapped structure (β1-swap) was formed by monothiol cGrx1 (C16S) alone. In summary, the first domain-swapped structure of an oxidoreductase in a hetero-oligomeric complex is presented. In particular, a single point mutation of a key cysteine residue to serine led to the formation of an intramolecular disulfide bond, as opposed to an intermolecular disulfide bond, and resulted in modulation of the underlying free-energy landscape of protein oligomerization.Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate in situ diffraction of protein crystals at room temperature devoid of any sample manipulation. Here an automated serial crystallography platform based on this crystal-on-crystal technology is presented. Selleckchem Quinine A hardware and software prototype has been implemented, and protocols have been established that allow users to image, recognize and rank hundreds to thousands of protein crystals grown on a chip in optical scanning mode prior to serial introduction of these crystals to an X-ray beam in a programmable and high-throughput manner. This platform has been tested extensively using fragile protein crystals. We demonstrate that with affordable sample consumption, this in situ serial crystallography technology could give rise to room-temperature protein structures of higher resolution and superior map quality for those protein crystals that encounter difficulties during freezing. This serial data collection platform is compatible with both monochromatic oscillation and Laue methods for X-ray diffraction and presents a widely applicable approach for static and dynamic crystallographic studies at room temperature.A modified Fourier shell correlation (mFSC) methodology is introduced that is aimed at addressing two fundamental problems that mar the use of the FSC the strong influence of mask-induced artifacts on resolution estimation and the lack of assessment of FSC uncertainties stemming from the inability to determine the associated number of degrees of freedom. It is shown that by simply changing the order of the steps in which the FSC is computed, the correlations induced by masking of the input data can be eliminated. In addition, to further reduce artifacts, a smooth Gaussian window function is used to outline the regions of reciprocal space within which the mFSC is computed. Next, it is shown that the number of degrees of freedom (ndf) of the system is approximated well by combining the ndf associated with the Gaussian window in reciprocal space with further reduction of the ndf owing to the use of the mask in real space. It is demonstrated through the application of the mFSC to both single-particle and helical structures that the mFSC yields reliable, mask-induced artifact-free results as a result of the introduced modifications. Since the adverse effect of the mask is eliminated, it also becomes possible to compute robust local resolutions both per voxel of a 3D map as well as, in a newly developed approach, per functional subunit, segment or even larger secondary element of the studied complex.Enzymes are catalysts of biological processes. Significant insight into their catalytic mechanisms has been obtained by relating site-directed mutagenesis studies to kinetic activity assays. However, revealing the detailed relationship between structural modifications and functional changes remains challenging owing to the lack of information on reaction intermediates and of a systematic way of connecting them to the measured kinetic parameters. Here, a systematic approach to investigate the effect of an active-site-residue mutation on a model enzyme, human carbonic anhydrase II (CA II), is described. Firstly, structural analysis is performed on the crystallographic intermediate states of native CA II and its V143I variant. The structural comparison shows that the binding affinities and configurations of the substrate (CO2) and product (HCO3-) are altered in the V143I variant and the water network in the water-replenishment pathway is restructured, while the proton-transfer pathway remains mostly unaffected. This structural information is then used to estimate the modifications of the reaction rate constants and the corresponding free-energy profiles of CA II catalysis. Finally, the obtained results are used to reveal the effect of the V143I mutation on the measured kinetic parameters (kcat and kcat/Km) at the atomic level. It is believed that the systematic approach outlined in this study may be used as a template to unravel the structure-function relationships of many other biologically important enzymes.