Shafferpoole4486
Similarly, the use of a conventional rice variety combined with alternating periods of drying and wetting in the three weeks before and after the heading stage decreased the contents of soil available As and the transfer coefficient of As in rice, subsequently reducing the accumulation of As in the grains and lowering the health risk of the intake of As. The significantly lower concentrations of Cd and As in rice grains and the risk of intake of Cd and As from rice was observed using a conventional rice variety combined with alternating drying-wetting in the three weeks before and after the heading stage and 1% silkworm excrement management. Thus, the combination of multiple measures in the coexistence of Cd and As in contaminated soils can be a promising strategy to avoid serious health risks and ensure the safety of food for local residents.Epidemiological and toxicological studies have demonstrated that exposure to fine particulate matter (PM2.5) during pregnancy is harmful to the tissues of the offspring. However, the mechanism by which PM2.5 exposure causes lung damage in the offspring or potential dietary therapy for this condition remains unclear. Mogrosides (MGs) are derived from the traditional plant Siraitia grosvenorii and are used medicinally, where they can moisten the lungs and relieve coughing. In this study, pregnant rats were exposed to PM2.5 by intratracheal instillation and treated with MGs by gavage to model the effect of PM2.5 in the offspring and the interventional effect of MGs on lung tissue. We then used transcriptomics, metabolomics, and RT-qPCR as tools to look for metabolite and genetic changes in the offspring. We found that when compared to the control group, the mRNA levels of the inflammatory mediator Pla2g2d and the metabolites lysophosphatidylcholines (LysoPCs) and arachidonic acid (AA) were up-regulated in the lung tissues of PM2.5 group. In contrast, these inflammatory changes were restored after treatment with MGs during pregnancy. In addition, the levels of AA, LPC 150 and LPC 180 were elevated in the PM2.5 group compared with control group. This increase was inhibited by co-administration of MGs. The change of PGA1 was adverse. In conclusion, even a relatively low exposure to PM2.5 in rats during pregnancy produces inflammation in the lungs of the male offspring, and an intervention with MGs could significantly alleviate this effect. Furthermore, Pla2g2d may represent a potential target for MGs resulting in the improvement of PM2.5-induced lung injury.Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is throughout most of the life span of a mouse under heavy pollution. CAP was introduced using a versatile aerosol concentration enrichment system which mimics natural PM2.5 exposure. CAP exposure caused a gradual elevation of intraocular pressure (IOP) and an increase in aqueous humor outflow resistance. In the conventional outflow tissues that regulates IOP, inducible nitric oxide synthase (iNOS) was up-regulated and 3-nitrotyrosine (3-NT) formation increased. At the cellular level, PM2.5 exposure increased the transendothelial electrical resistance of cells that control IOP (AAP cells). This is accompanied by increased reactive oxygen species (ROS), iNOS and 3-NT levels. Peroxynitrite scavenger MnTMPyP successfully treated the IOP elevation and restored it to normal levels by reducing 3-NT formation in outflow tissues. This study provides the novel evidence that in young mice, lifetime whole-body PM2.5 exposure has a direct toxic effect on intraocular tissues, which imposes a significant risk of IOP elevation and may initiate the development of ocular hypertension and glaucoma. This occurs as a result of protein nitration of conventional aqueous humor outflow tissues.Heavy metals in urban dust could pose noticeable human health risks, but there are few studies focusing on comprehensive human health risk assessment with the incorporation of both bioaccessibility and source apportionment in urban dust. Thus, fifty-eight urban dust samples were collected from kindergartens in Xiamen to analyze the bioaccessibility-based, source-specific health risk of heavy metals (V, Co, Ni, As, Mo, Cr, Mn, Cu, Zn, and Pb). Most heavy metals, except for V and Mn, were significantly enriched in urban dust based on their values of geoaccumulation index (Igeo) and may be influenced by human activities. The oral bioaccessibility values of heavy metals, which were estimated by the Solubility/Bioaccessibility Research Consortium (SBRC) in vitro model, ranged from 1.563% to 76.51%. The source apportionment determined by applying the absolute principal component analysis-multiple linear regression (APCS-MLR) model indicated five main potential sources, coal combustion, traffic and industrial, natur for better human health protection.Thiram causes tibial dyschondroplasia in broilers, leading to a significant economic loss in the poultry industry. Our study explored the effects of taurine in thiram induced tibial dyschondroplasia (TD) through in vivo and in vitro approches. In in vivo study, thiram resulted in lameness disorder, low production parameters ALP, ACP, and a high level of NOS. While, the taurine exhibited promising effect by reducing lameness, increasing ALP, ACP levels, and significantly lowering NOS level with the restoration of the growth plate. In in vitro study, thiram caused distortion and disintegration of chondrocytes. The CCK-8 technique revealed the lower cell activity in TD as compared with the treatment group. Even, the treatment and taurine groups had higher cell activity than control group. Also, the chondrocyte morphology progressively reverted to normal after taurine treatment. It might effectively decreased the symptoms of TD in broilers and their production performance. Further research found that the taurine effectively improved chondrocytes' cell viability and recovered lameness disorder by regulation of HIF-1α, VEGFA, and Wnt/β-catenin signaling pathways. In summary, these results indicate that taurine has a protective effect on thiram-induced broilers and it can enhance the growth activity by directly affecting the development of chondrocytes and blood vessels.
Lung cancer is the leading cause of death worldwide, and lung adenocarcinoma (LUAD) is the most common histological subtype. INTS7, one of the subunits of the integrator complex, is upregulated in several tumors. Thus, we aimed to investigate the expression profile and clinical significance of INTS7 in LUAD.
The expression profile of INTS7 was tested in TCGA database and clinical specimens. ROC curve was used to detect the diagnostic value of INTS7, CEA and INTS7 combined with CEA. Kaplan-Meier analysis was used to analyze the prognostic value of INTS7. Differentially expressed genes (DEGs) related to INTS7 were analyzed, and functional enrichment analysis was used to explore the potential mechanisms related to DEGs. The correlations between INTS7 and tumor-infiltrating immune cells, immune scores, stromal scores, and immune checkpoints were explored. Finally, the relationship between INTS7 expression and sensitivity to molecular-targeted therapy was examined.
Data from TCGA database showed that INTS7 mpoints and exhibited less sensitivity to molecular-targeted drugs.
INTS7 is a potential diagnostic biomarker for LUAD. And its expression level may correlate with tumor microenvireoment, immunotherapy responsiveness, and molecular-targeted therapy responsiveness in LUAD.
INTS7 is a potential diagnostic biomarker for LUAD. And its expression level may correlate with tumor microenvireoment, immunotherapy responsiveness, and molecular-targeted therapy responsiveness in LUAD.B cell-targeted therapies have evolved as established therapies for systemic lupus erythematosus (SLE); however, existing approaches still do not thoroughly satisfy clinical requirements due to limited efficacy against memory B cells, autoantibody-producing plasmablasts and disease heterogeneity. To provide a new treatment option for SLE, we created a novel anti-Igβ antibody with enhanced affinity for Fc gamma receptor (FcγR) IIB called ASP2713. ASP2713 cross-reacted with both human and cynomolgus monkey Igβ and showed increased binding affinity for human and monkey FcγRIIB compared to native human IgG1. This binding property allows dominant B cell binding and induction of intrinsic negative feedback signals. In human B cells, ASP2713 significantly and concentration-dependently induced FcγRIIB ITIM phosphorylation, while suppressing proliferation under B cell receptor stimulation. Selleck EGFR inhibitor This pharmacological effect was also confirmed in in vitro B cell proliferation and antibody production assays using peripheral B cells isolated from patients with SLE. In a cynomolgus monkey tetanus toxoid-induced antibody production model, ASP2713 almost completely inhibited the increase in antigen-specific antibodies with superior efficacy to rituximab. Additionally, ASP2713 significantly suppressed recall antibody production in response to secondary tetanus toxoid immunization, indicating the memory B cell- and plasmablast-targeting potential of ASP2713. Our results suggest that ASP2713 may have therapeutic potential as a treatment for SLE, where B cells play a pathogenic role.The accumulation of amyloid beta (Aβ) in the brain is thought to be associated with cognitive deficits in Alzheimer's disease (AD). However, current methods to combat Aβ neurotoxicity are still lacking. G protein-coupled receptor 17 (GPR17) has become a target for treating inflammation in brain diseases, but it is unclear whether it has a role in AD. Here, we investigated the effects of cangrelor, a GPR17 antagonist, on neurotoxicity and memory impairment induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 in mice. The behavior results showed that cangrelor (2.0 or 4.0 μg/mouse, i.c.v.) treatment reversed the deficits in memory and learning ability induced by Aβ1-42 in mice. Importantly, we demonstrated for the first time that GPR17 expression in the hippocampus and frontal cortex is increased in response to Aβ1-42 exposures. We also found that cangrelor treatment reduced the activity of β-secretase 1 (BACE1) and the levels of soluble Aβ1-42 in the hippocampus and frontal cortex. Meanwhile, cangrelor treatment suppressed oxidative stress induced by Aβ1-42, as proved by reduced production of malondialdehyde (MDA), and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Furthermore, cangrelor also suppressed Aβ1-42-induced neuroinflammation, characterized by suppressed activation of microglia, decreased the levels of pro-inflammatory cytokines, and nuclear translocation of NF-κB p65, as well as ameliorated synaptic deficits by promoting the upregulation of synaptic proteins, and increasing the number of Golgi-Cox stained dendritic spines. These results suggest that cangrelor may reverse Aβ1-42-induced cognition deficits via inhibiting oxidative stress, neuroinflammation, and synaptic dysfunction mediated by Nrf2/HO-1 and NF-κB signaling.