Sextonthiesen0982
Eucommia ulmoides Oliv., a native Chinese plant species, has been used as a traditional Chinese medicine formulation to treat rheumatoid arthritis (RA), strengthen bones and muscles, and lower blood pressure. Various parts of this plant such as the bark, leaves, and flowers have been found to have anti-inflammatory properties. E. ulmoides has potential applications as a therapeutic agent against bone disorders, which were investigated in this study. In vitro, RA joint fibroblast-like synoviocytes (RA-FLS) were treated with different concentrations (0, 25, 50, 100, 200, 400, 800, and 1000 μg/mL) of E. ulmoides bark, leaf, and male flower alcoholic extracts (EB, EL, and EF, respectively) to determine their potential cytotoxicity. Tumor necrosis factor- (TNF-) α and nitric oxide (NO) levels in RA-FLS were quantified using enzyme-linked immunosorbent assay (ELISA). Furthermore, collagen-induced arthritis (CIA) rats were treated with EB, EL, EF, Tripterygium wilfordii polyglycoside (TG) or the normal control (Nor), and then ankle joint pathology, bone morphology, and serum and spleen inflammatory cytokine levels were evaluated. The results showed that, in RA-FLS, EB, EL, and EF were not cytotoxic; EB and EF reduced TNF-α supernatant levels; and EB, EL, and EF reduced NO levels. The results of in vivo experiments showed that EB, EL, and EF alleviated ankle swelling and joint inflammation, while all extracts diminished inflammatory cell infiltration, pannus and bone destruction, and bone erosion. All tested extracts inhibited interleukin- (IL-) 6, IL-17, and TNF-α mRNA in the spleen of CIA rats, while EB most effectively reduced osteoclasts and inhibited bone erosion. Ipilimumab cell line EF showed the most obvious inhibition of inflammatory factors and pannus. Thus, EB, EL, and EF may alleviate bone destruction by inhibiting inflammation.
Bismuth-containing quadruple therapy achieves higher eradication rate of
. High level of bismuth in blood may result in damage of many organs. Wei Bi Mei is a new bismuth-containing drug combining chemicals and Chinese medicine portions. The present research is to study the pharmacokinetics of bismuth to evaluate the safety and rational use of Wei Bi Mei granules.
. Seven healthy Chinese adult subjects were enrolled in this research, which included a single-dose study and a multiple-dose study. Wei Bi Mei granules were administered orally to the subjects at corresponding time. Blood and urine were collected. All samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS).
For single-dose Wei Bi Mei granules administration, the mean time to peak concentration (
) of bismuth was 2.29 ± 0.76 h, and the mean peak concentration (
) of bismuth was 0.85 ± 0.55 ng/mL. For multiple-dose Wei Bi Mei granules administration, the
was 2.25 ± 1.18 ng/mL at day two, and the volume of distribution (
) was (22.97 ± 9.82) × 10
L. The urinary excretion of bismuth was the fastest during the first two days, with a mean excretion rate of 3.84 ± 1.23 ng/h. The bismuth concentration in urine was significantly reduced at day 16.
Bismuth has a washout period of approximately two months. The concentration of bismuth in blood was far less than the "safe level." Thus, Wei Bi Mei is a highly safe therapeutic medicine, with a good clinical application value. Wei Bi Mei should be recommended more widely for use in bismuth-containing quadruple therapy for the treatment of
infection.
Bismuth has a washout period of approximately two months. The concentration of bismuth in blood was far less than the "safe level." Thus, Wei Bi Mei is a highly safe therapeutic medicine, with a good clinical application value. Wei Bi Mei should be recommended more widely for use in bismuth-containing quadruple therapy for the treatment of Helicobacter pylori infection.Yunnan is a multiethnic province in southwest China, rich in Materia medica resources, and is popularly known as the kingdom of plants. Biomedicine and public health industry have been the industrial pillars of Yunnan since 2016, which is the important pharmaceutical industrial base for Dai and Yi medicine in China. This review of the Yunnan ethnic medicine industry describes some of the problems to be solved in the development of sustainable ethnomedicine in China. We investigated Chinese patent medicines (CPMs) declared as ethnomedicine on the drug instructions and identified 28 Dai patent medicines (DPMs) and 73 Yi patent medicines (YPMs) that were approved for clinical use in China. In further research, the clinical indications of these CPMs were determined, and the quality standard of medicinal materials and their usage frequencies in DPMs and YPMs were investigated. We also collected and analyzed the data on use of botanical and animal sources of medicines, the rare and endangered medicinal materials, and toxic medicines in DPMs and YPMs. The application of zootherapy in Yi traditional medicine was introduced from its abundant ancient documents and records; based on the "YaGei" theory in Dai traditional medicine, toxic medicines can be relatively safe in DPMs. However, for promoting the Yunnan traditional medicine industry, it is necessary to strengthen medical research to expand evidence-based clinical practice and balance ethnomedicine production and sustainable utilization of Materia medica resources, especially the animal sources of medicines, toxic medicines, and the protected wild resources reported in this survey. Only in this way can industrialization of ethnomedicine promote the improvement of human health.
Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored.
We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer.
The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice.