Sextonrahbek4169
Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive.
A total of 18 eight-week Sprague-Dawley rats were assigned into three groups Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.
Eight-week treadmill-walking was effective at maintaining the integrity of cartilage-subchondral bone unit and reducing the elevated systematic inflammation factors and microbiome-derived metabolites. Furthermore, 16S ribosomal ribonucleic acid (rRNA) sequencing showed disease-relevant microbial shiof PTOA. Cite this article Bone Joint Res 2022;11(4)214-225.Aim Adult pilocytic astrocytoma is a rare tumor. We aim to contribute to understanding its clinical course and prognosis. Patients & methods We searched our database for patients older than 18 years with pathology-proven pilocytic astrocytoma. Patients' clinical data were analyzed. Results Fifteen patients were identified. The median age at diagnosis was 25 years (range 18-56). Tumors were supratentorial in 47%. Gross-total and near-total resections were achieved in 40%, and sub-total resection in 47%. One (7%) recurrence and no mortality were encountered during a median follow-up of 11 months (range 1-76). Conclusion Pilocytic astrocytoma behaves differently in adults compared with pediatrics. It tends to arise in surgically challenging areas where the extent of resection may be limited. Total resection should be the main therapy whenever feasible. The survival rates are good, and recurrence is low.
Cerebral small vessel injury, including loss of endothelial tight junctions, endothelial dysfunction, and blood-brain barrier breakdown, is an early and typical pathology for Alzheimer's disease, cerebral amyloid angiopathy, and hypertension-related cerebral small vessel disease. Whether there is a common mechanism contributing to these cerebrovascular alterations remains unclear. Studies have shown an elevation of BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in cerebral vessels from cerebral amyloid angiopathy or Alzheimer's disease patients, suggesting that vascular BACE1 may involve in cerebral small vessel injury.
To understand the contribution of vascular BACE1 to cerebrovascular impairments, we combined cellular and molecular techniques, mass spectrometry, immunostaining approaches, and functional testing to elucidate the potential pathological mechanisms.
We observe a 3.71-fold increase in BACE1 expression in the cerebral microvessels from patients with hypertension. Importantly, we dysfunction, and memory deficits.
Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.
Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.
Peripheral arterial chemoreceptors monitor the chemical composition of arterial blood and include both the carotid and aortic bodies (ABs). While the role of the carotid bodies has been extensively studied, the physiological role of the ABs remains relatively under-studied, and its role in hypertension is unexplored. We hypothesized that activation of the ABs would increase coronary blood flow in the normotensive state and that this would be mediated by the parasympathetic nerves to the heart. In addition, we determined whether the coronary blood flow response to stimulation of the ABs was altered in an ovine model of renovascular hypertension.
Experiments were conducted in conscious and anesthetized ewes instrumented to record arterial pressure, coronary blood flow, and cardiac output. Two groups of animals were studied, one made hypertensive using a 2 kidney one clip model (n=6) and a sham-clipped normotensive group (n=6).
Activation of the ABs in the normotensive animals resulted in a significant increase in coronary blood flow, mediated, in part by a cholinergic mechanism since it was attenuated by atropine infusion. Activation of the ABs in the hypertensive animals also increased coronary blood flow (
<0.05), which was not different from the normotensive group. Interestingly, the coronary vasodilation in the hypertensive animals was not altered by blockade of muscarinic receptors but was attenuated after propranolol infusion.
Taken together, these data suggest that the ABs play an important role in modulating coronary blood flow and that their effector mechanism is altered in hypertension.
Taken together, these data suggest that the ABs play an important role in modulating coronary blood flow and that their effector mechanism is altered in hypertension.Alternating magnetic fields (AMFs) are recently demonstrated as a promising strategy to promote the electrochemical catalytic reactions. However, the underlying mechanisms are still an open question. In this work, we systematically investigated the influence of AMFs on the hydrogen evolution reaction (HER) by using a Fe-Co-Ni-P-B magnetic catalyst. The HER catalytic efficiency is boosted significantly by AMFs, with 27% increase in current density at 20 mT. This is attributed to the enhancement of charge-transfer efficiency by Lorentz interaction with a minor contribution from the heating effect. The high magnetic permeability and skin effect of electromagnetic eddy current for the Fe-Co-Ni-P-B electrode can magnify the Lorentz effect. These findings clarify the mechanism of AMF-enhanced HER catalytic activities and open a door for designing a high-efficiency electrocatalysis system.Polyethylene terephthalate (PET) is a mass-produced petroleum-based synthetic polymer. Enzymatic PET degradation using, for example, Ideonella sakaiensis PETase (IsPETase) can be a more environmentally friendly and energy-saving alternative to the chemical recycling of PET. However, IsPETase is a mesophilic enzyme with an optimal reaction temperature lower than the glass transition temperature (T g) of PET, where the amorphous polymers can be readily accessed for enzymatic breakdown. In this study, we used error-prone PCR to generate a mutant library based on a thermostable triple mutant (TM) of IsPETase. The library was screened against the commercially available polyester-polyurethane Impranil DLN W 50 for more thermostable IsPETase variants, yielding four variants with higher melting points. CFTRinh172 The most promising IsPETaseTMK95N/F201I variant had a 5.0°C higher melting point than IsPETaseTM. Although this variant showed a slightly lower activity on PET at lower incubation temperatures, its increased thermostability makes it a more active PET hydrolase at higher reaction temperatures up to 60°C. Several other variants were compared and combined with selected previously published IsPETase mutants in terms of thermostability and hydrolytic activity against PET nanoparticles and amorphous PET films. Our findings indicate that thermostability is one of the most important characteristics of an effective PET hydrolase.Flow cytometry and its technological possibilities have greatly advanced in the past decade as analysis tool for single cell properties and population distributions of different cell types in bioreactors. Along the way, some solutions for automated real-time flow cytometry (ART-FCM) were developed for monitoring of bioreactor processes without operator interference over extended periods with variable sampling frequency. However, there is still great potential for ART-FCM to evolve and possibly become a standard application in bioprocess monitoring and process control. This review first addresses different components of an ART-FCM, including the sampling device, the sample-processing unit, the unit for sample delivery to the flow cytometer and the settings for measurement of pre-processed samples. Also, available algorithms are presented for automated data analysis of multi-parameter fluorescence datasets derived from ART-FCM experiments. Furthermore, challenges are discussed for integration of fluorescence-activated cell sorting into an ART-FCM setup for isolation and separation of interesting subpopulations that can be further characterized by for instance omics-methods. As the application of ART-FCM is especially of interest for bioreactor process monitoring, including investigation of population heterogeneity and automated process control, a summary of already existing setups for these purposes is given. Additionally, the general future potential of ART-FCM is addressed.The utilization of mesenchymal stem/stromal cells raises new hopes in treatment of diseases and pathological conditions, while at the same time bringing immense challenges for researchers, manufacturers and physicians. It is essential to consider all steps along the in vitro fabrication of cell-based products in order to reach efficient and reproducible treatment outcomes. Here, the optimal protocols for isolation, cultivation and differentiation of mesenchymal stem cells are required. In this review we discuss these aspects and their influence on the final cell-based product quality. We demonstrate that physiological in vitro cell cultivation conditions play a crucial role in therapeutic functionalities of cultivated cells. We show that three-dimensional cell culture, dynamic culture conditions and physiologically relevant in vitro oxygen concentrations during isolation and expansion make a decisive contribution towards the improvement of cell-based products in regenerative medicine.Biocatalysis is an established chemical synthesis technology that has by no means been restricted to research laboratories. The use of enzymes for organic synthesis has evolved greatly from early development to proof-of-concept - from small batch production to industrial scale. Different enzyme immobilization strategies contributed to this success story. Recently, the use of hydrogel materials for the immobilization of enzymes has been attracting great interest. Within this review, we pay special attention to recent developments in this key emerging field of research. Firstly, we will briefly introduce the concepts of both biocatalysis and hydrogel worlds. Then, we list recent interesting publications that link both concepts. Finally, we provide an outlook and comment on future perspectives of further exploration of enzyme immobilization strategies in hydrogels.Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives.