Sextonheath8989

Z Iurium Wiki

Copyright ©2020, American Association for Cancer Research.PD-L1 (programmed cell death 1 ligand 1) is a key driver of tumor-mediated immune suppression and targeting it with antibodies can induce therapeutic responses. Given the costs and associated toxicity of PD-L1 blockade, alternative therapeutic strategies are needed. Using reverse-phase protein arrays to assess drugs in use or likely to enter trials, we performed a candidate drug screen for inhibitors of PD-L1 expression and identified verteporfin as a possible small molecule inhibitor. Verteporfin suppressed basal and interferon (IFN)-induced PD-L1 expression in vitro and in vivo through golgi-related autophagy and disruption of the STAT1-IRF1-TRIM28 signaling cascade, but not affecting the proinflammatory CIITA-MHC II cascade. Within the tumor microenvironment, verteporfin inhibited PD-L1 expression, which associated with enhanced T-lymphocyte infiltration. Inhibition of Chromatin-associated enzyme poly (ADP-ribose) polymerase 1 (PARP1) induced PD-L1 expression in high endothelial venules (HEVs) in tumors and when combined with verteporfin enhanced therapeutic efficacy. Thus, verteporfin effectively targets PD-L1 through transcriptional and posttranslational mechanisms, representing an alternative therapeutic strategy for targeting PD-L1. Copyright ©2020, American Association for Cancer Research.Peptidylarginine deiminases (PADIs) catalyze post-translational modification of many target proteins and have been suggested to play a role in carcinogenesis. Citrullination of histones by PADI4 was recently implicated in regulating embryonic stem and hematopoietic progenitor cells. Here we investigated a possible role for PADI4 in regulating breast cancer stem cells. PADI4 activity limited the number of cancer stem cells (CSC) in multiple breast cancer models in vitro and in vivo. Mechanistically, PADI4 inhibition resulted in a widespread redistribution of histone H3 with increased accumulation around transcriptional start sites. Interestingly, epigenetic effects of PADI4 on the bulk tumor cell population did not explain the CSC phenotype. However, in sorted tumor cell populations, PADI4 downregulated expression of master transcription factors of stemness, NANOG and OCT4, specifically in the cancer stem cell compartment, by reducing the transcriptionally activating H3R17me2a histone mark at those loci; this effect was not seen in the non-stem cells. A gene signature reflecting tumor cell-autonomous PADI4 inhibition was associated with poor outcome in human breast cancer datasets, consistent with a tumor suppressive role for PADI4 in estrogen receptor-positive tumors. These results contrast with known tumor-promoting effects of PADI4 on the tumor stroma and suggest that the balance between opposing tumor cell-autonomous and stromal effects may determine net outcome. Our findings reveal a novel role for PADI4 as a tumor suppressor in regulating breast cancer stem cells and provide insight into context-specific effects of PADI4 in epigenetic modulation. Copyright ©2020, American Association for Cancer Research.Current cancer treatments are largely based on the genetic characterization of primary tumors and are ineffective for metastatic disease. Here we report that DNA methyltransferase 3B (DNMT3B) is induced at distant metastatic sites and mediates epigenetic reprogramming of metastatic tumor cells. Sabutoclax Multi-omics analysis and spontaneous metastatic mouse models revealed that DNMT3B alters multiple pathways including STAT3, NFκB, PI3K/Akt, β-catenin, and Notch signaling, which are critical for cancer cell survival, apoptosis, proliferation, invasion, and colonization. PGE2 and IL-6 were identified as critical inflammatory mediators in DNMT3B induction. DNMT3B expression levels positively correlated with human metastatic progression. Targeting IL-6 or COX-2 reduced DNMT3B induction and improved chemo- or PD1- therapy. We propose a novel mechanism linking the metastatic microenvironment with epigenetic alterations that occur at distant sites. These results caution against the "Achilles' heel" in cancer therapies based on primary tumor characterization and suggests targeting DNMT3B induction as new option for treating metastatic disease. Copyright ©2020, American Association for Cancer Research.Cancer cells exploit the unfolded protein response (UPR) to mitigate endoplasmic reticulum (ER) stress caused by cellular oncogene activation and a hostile tumor microenvironment (TME). The key UPR sensor IRE1α resides in the ER and deploys a cytoplasmic kinase-endoribonuclease module to activate the transcription factor XBP1s, which facilitates ER-mediated protein folding. Studies of triple-negative breast cancer (TNBC)-a highly aggressive malignancy with a dismal post-treatment prognosis-implicate XBP1s in promoting tumor vascularization and progression. However, it remains unknown whether IRE1α adapts the ER in TNBC cells and modulates their TME, and whether IRE1α inhibition can enhance anti-angiogenic therapy-previously found to be ineffective in TNBC patients. To gauge IRE1α function, we defined an XBP1s-dependent gene signature, which revealed significant IRE1α pathway activation in multiple solid cancers, including TNBC. IRE1α knockout in TNBC cells markedly reversed substantial ultrastructural expansion of the ER within these cells upon growth in vivo. IRE1α disruption also led to significant remodeling of the cellular TME, increasing pericyte numbers while decreasing cancer-associated fibroblasts and myeloid-derived suppressor cells. Pharmacological IRE1α kinase inhibition strongly attenuated growth of cell-line-based and patient-derived TNBC xenografts in mice and synergized with anti-VEGF-A treatment to cause tumor stasis or regression. Thus, TNBC cells critically rely on IRE1α to adapt their ER to in vivo stress and to adjust the TME to facilitate malignant growth. TNBC reliance on IRE1α is an important vulnerability that can be uniquely exploited in combination with anti-angiogenic therapy as a promising new biologic approach to combat this lethal disease. Copyright ©2020, American Association for Cancer Research.

Autoři článku: Sextonheath8989 (Dall Munkholm)