Serupsvenstrup7154
g., groundwater) were thoroughly reviewed. The feasibility of using 1,2,3-TCP as an electron acceptor by organohalide-respiring bacteria under anoxic conditions was predicted based on thermodynamic analysis. Last but not least, in situ bioremediation of 1,2,3-TCP contaminated sites was summarized, and prospects for future research were discussed.The genus Dehalogenimonas (Dhgm) is a recently discovered taxonomic group within the class Dehalococcoidia of the phylum Chloroflexi. To date, Dhgm consists of three formally described species including Dehalogenimonas lykanthroporepellens, Dehalogenimonas alkenigignens and Dehalogenimonas formicexedens. All isolates of these three Dhgm species are obligate organohalide-respiring bacteria. They use hydrogen and formate as electron donors and chlorinated ethanes (e.g., 1,2,3-trichloropropane, 1,2-dichloropropane, 1,2-dichloroethane) as electron acceptors in energy-conserving reductive dechlorination reaction. Chlorinated ethanes are common groundwater contaminants in China. The unique metabolic capacities of Dhgm strains implicate it may play important roles in site remediation. The recently reported Dhgm sp. strain WBC-2 and 'Candidatus Dehalogenimonas etheniformans' strain GP are capable of dechlorinating certain chlorinated ethenes. More importantly, strain GP can completely detoxify the carcinogenic vinyl chloride (VC) to ethene. These findings expand the diversity of microorganisms involved in the respiratory VC reductive dechlorination and improve the understanding of Dhgm's ecological functions. Here, we summarize the advances in physiological and biochemical characteristics, ecological functions and genomic features of Dhgm, with the aim to develop effective and sustainable strategies to facilitate the bioremediation of chlorinated compounds contaminated sites.Bioremediation is regarded as one of the most promising methods for the remediation of the soil and groundwater contaminated with organic compounds, mainly due to its cost-effectiveness and environmental friendliness. Using VOSviewer and CiteSpace, we analyzed all publications in this area in core database of Web of Science from 1990 to 2020. The number of publications in this area showed an increasing trend worldwide. The country with the largest total number of publications was USA, followed by China and India. Since 2012, the number of annual publications of China exceeded USA and ranked the first. The top three journals which published papers in this area were Chemosphere, Environmental Science & Technology, and Science of the Total Environment. The Chinese Academy of Sciences published the largest number of papers among the research institutions globally, but the University of California in USA had the highest total citations and h-index. Bibliometric analysis indicated that it is important to develop biotechnologies of bioremediation coupled with chemical/physical remediation to overcome the challenge of low efficiency and long remediation duration associated with bioremediation. In addition, the bioremediation on the mixed contaminants, such as organic contaminants and heavy metals, or mixtures of different organic contaminants, is an important direction. Finally, the rapid development of microbiome technologies will further promote the exploration of mechanisms involved in bioremediation on the genetic and molecular level.Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants that are widely distributed in the environment. Due to their stable structure and poor degradability, PAHs exhibit carcinogenic, teratogenic, and mutagenic toxicity to the ecological environment and organisms, thus increasing attentions have been paid to their removals and remediation. Green, safe and economical technologies are widely used in the bioremediation of PAHs-contaminated soil. This article summarizes the present status of PAHs pollution in soil of China from the aspects of origin, migration, fate, and pollution level. SAR302503 Meanwhile, the types of microorganisms and plants capable of degrading PAHs, as well as the underlying mechanisms, are summarized. The features of three major bioremediation technologies, i.e., microbial remediation, phytoremediation, and joint remediation, are compared. Analysis of the interaction mechanisms between plants and microorganisms, selection and cultivation of stress-resistant strains and plants, as well as safety and efficacy evaluation of practical applications, are expected to become future directions in this field.Along with the increasingly serious environmental pollution, dealing with the "white pollution" issue, which is caused by the worldwide use of not readily-degradable or non-degradable synthetic plastics, has become a great challenge. It is an environmentally friendly strategy to degrade synthetic plastics using microorganisms that exist in nature or evolved under selection pressure. Based on the NSFC-EU International Cooperation and Exchanges Project "Bio Innovation of a Circular Economy for Plastics", this review summarized the screening of bacteria, fungi and microbial consortia capable of degrading synthetic plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET). We also analyzed the role of various microorganisms played in the degradation of petroleum-based plastics. Moreover, we discussed the pros and cons of using microorganisms and enzymes for degradation of synthetic plastics.Denitrification is an indispensable part of most sewage treatment systems. The biological denitrification process has attracted much attention in the past decades due to the advantages such as cost-effectiveness, process simplicity, and absence of secondary pollution. This review summarized the advances on biological denitrification processes in recent years according to the different physiological characteristics and denitrification mechanisms of denitrification microorganisms. The pros and cons of different biological denitrification processes developed based on nitrifying bacteria, denitrifying bacteria, and anaerobic ammonia-oxidizing bacteria were compared with the aim to identify the best strategy for denitrification in a complex wastewater environment. The rapid development of synthetic biology provides possibilities to develop highly-efficient denitrifying strains based on mechanistic understandings. Combined with the applications of automatic simulation to obtain the optimal denitrification conditions, cost-effective and highly-efficient denitrification processed can be envisioned in the foreseeable future.Antibiotics are widely used and prevalently distributed in the environment. The issue of antibiotic resistance genes has posed a huge threat to the global public health. Soil is an important sink of antibiotics in the environment. Antibiotic exposure may introduce adverse effects on soil organisms, and bring indirect but potential risks to human health. Therefore, it is urgent to take actions to remediate antibiotics-contaminated soil. This review summarized effects of antibiotics on phenotype growth of plants, physiological characteristics and community structure of animals, composition and structure of microbial communities, and transmission of antibiotic resistance genes among organisms in soil. Additionally, the potential and prospects of employing antibiotic-resistant soil plants, animals, microorganisms, and their combinations to treat antibiotics-contaminated soil were illustrated. Last but not least, the unaddressed issues in this area were proposed, which may provide insights into relevant research directions in the future.A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.Sulfonamides (SAs) are a kind of antibiotics widely used in medical treatment and livestock breeding. However, they have poor degradability in human and animal intestines, and will enter the sewage treatment system through the discharge of feces and urine. The aerobic activated sludge (AAS) in wastewater treatment plant was found to be able to effectively transform SAs. This article summarizes the advances in biodegradation of SAs in aerobic activated sludge system, which includes the biodegradation mechanisms, the main biodegradation pathways, and the environmental factors affecting the degradation efficiency. Challenges encountered in the current research were discussed, with the aim to provide scientific basis for optimizing the biodegradation of SAs in wastewater treatment process.Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants, which have received widespread attentions due to their carcinogenic and mutagenic toxicity. The microbial degradation of PAHs are usually started from the hydroxylation, followed by dehydrogenation, ring cleavage and step-by-step removal of branched chains, and finally mineralized by the tricarboxylic acid cycle. Rieske type non-heme iron aromatic ring-hydroxylating dioxygenases (RHOs) or cytochrome P450 oxidases are responsible for the conversion of hydrophobic PAHs into hydrophilic derivatives by the ring hydroxylation. The ring hydroxylation is the first step of PAHs degradation and also one of the rate-limiting steps. Here, we review the distribution, substrate specificity, and substrate recognition mechanisms of RHOs, along with some techniques and methods used for the research of RHOs and PAHs.The facultative anaerobic and strict anaerobic microorganisms enriched and acclimated during the anaerobic digestion process are crucial for the efficiency of the anaerobic digestion system. Most of the problems encountered during running anaerobic digestion processes could be effectively improved via stimulation of microbial metabolic activity. Benefited from the rapid development of microbiome techniques, deeper insights into the microbial diversity in anaerobic digestion systems, e.g. the microbe-microbe interactions and microbe-environment interactions, have been gained. A complex and intricate metabolic network exists in the anaerobic digestion system of solid organic wastes. However, little is known about these interactions and the underlying mechanisms. This review briefly summarized the representative interactions between microbial communities during anaerobic digestion process discovered to date. In addition, typical issues encountered during the anaerobic digestion of solid organic wastes and how microbes can tackle and alleviate these issues were discussed.