Searsmccann1824

Z Iurium Wiki

Finally, we found that seipin is enriched at ER tubules and controls the condensation process, preventing excessive tubule-induced nucleation. The absence of seipin provokes erratic LD nucleation events determined by the abundance of ER tubules. In summary, our data indicate that membrane curvature catalyzes LD assembly.Visual systems are often equipped with neurons that detect small moving objects, which may represent prey, predators, or conspecifics. Although the processing properties of those neurons have been studied in diverse organisms, links between the proposed algorithms and animal behaviors or circuit mechanisms remain elusive. Here, we have investigated behavioral function, computational algorithm, and neurochemical mechanisms of an object-selective neuron, LC11, in Drosophila. With genetic silencing and optogenetic activation, we show that LC11 is necessary for a visual object-induced stopping behavior in walking flies, a form of short-term freezing, and its activity can promote stopping. We propose a new quantitative model for small object selectivity based on the physiology and anatomy of LC11 and its inputs. The model accurately reproduces LC11 responses by pooling fast-adapting, tightly size-tuned inputs. Direct visualization of neurotransmitter inputs to LC11 confirmed the model conjectures about upstream processing. Our results demonstrate how adaptation can enhance selectivity for behaviorally relevant, dynamic visual features.The human occipito-temporal region hMT+/V5 is well known for processing visual motion direction. Here, we demonstrate that hMT+/V5 also represents the direction of auditory motion in a format partially aligned with the one used to code visual motion. We show that auditory and visual motion directions can be reliably decoded in individually localized hMT+/V5 and that motion directions in one modality can be predicted from the activity patterns elicited by the other modality. Despite shared motion-direction information across the senses, vision and audition, however, overall produce opposite voxel-wise responses in hMT+/V5. Our results reveal a multifaced representation of multisensory motion signals in hMT+/V5 and have broader implications for our understanding of how we consider the division of sensory labor between brain regions dedicated to a specific perceptual function.Animals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermosensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strikingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster (∼25°C). selleck kinase inhibitor We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold "thermometer" circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and activity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temperature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to cold conditions on the timescale of hours to days.Coral bleaching, caused by the loss of brownish-colored dinoflagellate photosymbionts from the host tissue of reef-building corals, is a major threat to reef survival. Occasionally, bleached corals become exceptionally colorful rather than white. These colors derive from photoprotective green fluorescent protein (GFP)-like pigments produced by the coral host. There is currently no consensus regarding what causes colorful bleaching events and what the consequences for the corals are. Here, we document that colorful bleaching events are a recurring phenomenon in reef regions around the globe. Our analysis of temperature conditions associated with colorful bleaching events suggests that corals develop extreme coloration within 2 to 3 weeks after exposure to mild or temporary heat stress. We demonstrate that the increase of light fluxes in symbiont-depleted tissue promoted by reflection of the incident light from the coral skeleton induces strong expression of the photoprotective coral host pigments. We describe an optical feedback loop involving both partners of the association, discussing that the mitigation of light stress offered by host pigments could facilitate recolonization of bleached tissue by symbionts. Our data indicate that colorful bleaching has the potential to identify local environmental factors, such as nutrient stress, that can exacerbate the impact of elevated temperatures on corals, to indicate the severity of heat stress experienced by corals and to gauge their post-stress recovery potential. VIDEO ABSTRACT.Selectively remembering or forgetting newly encountered information is essential for goal-directed behavior. It is still an open question, however, whether intentional forgetting is an active process based on the inhibition of unwanted memory traces or whether it occurs passively through reduced recruitment of selective rehearsal [1, 2]. Here, we show that intentional control of memory encoding relies on both, enhanced active inhibition and decreased selective rehearsal, and that these two processes can be separated in time and space. We applied representational similarity analysis (RSA [3]) and time-frequency analysis to EEG data during an item-method directed forgetting experiment [4]. We identified neural signatures of both, the intentional suppression and the voluntary upregulation of item-specific representations. Successful active forgetting was associated with a downregulation of item-specific representations in an early time window 500 ms after the instruction. This process was initiated by an increase in oscillatory alpha (8-13 Hz) power, a well-established signature of neural inhibition [5, 6], in occipital brain areas. During a later time window, 1500 ms after the cue, intentional forgetting was associated with reduced employment of active rehearsal processes, as reflected by an attenuated upregulation of item-specific representations as compared to intentionally encoded items. Our data show that active inhibition and selective rehearsal are two separate mechanisms whose consecutive employment allows for a voluntary control of memory formation.Centrioles are essential components of centrosome, the main microtubule-organizing center of animal cells required for robust spindle bipolarity [1, 2]. They are duplicated once during the cell cycle [3], and the duplication involves assembly of a cartwheel on the pre-existing centriole followed by assembly of triplet microtubules around the cartwheel [4, 5]. Although the molecular details of cartwheel formation are understood [6-13], the mechanisms initiating the formation of centriolar microtubules are not known. Here, we show that the central component of cartwheel, HsSAS-6 plays a crucial role in the formation of centriolar microtubules by interacting with the microtubule nucleation machinery, γ-tubulin ring complex (γ-TuRC) in human cells. The globular N terminus and the central coiled-coil domain of SAS-6 are required for formation of the cartwheel [7, 14], whereas the function of its C-terminal outer cartwheel region in centriole duplication remains unclear. We find that deletion of HsSAS-6 C terminus disrupts microtubule formation in daughter centriole, and as a result, cells fail to form the new centriole. Consequently, this results in mitotic cells having only two centrioles localized at a single site. Detailed molecular analyses showed that HsSAS-6 interacts with the γ-TuRC proteins and associates with the γ-TuRC at the centrosome, and furthermore, the C terminus is essential for this association. High-resolution microscopy revealed localization of the γ-TuRC protein, γ-tubulin as multiple lobes surrounding the HsSAS-6-containing central hub in the centriole. Together, the results indicate that HsSAS-6 regulates centriolar microtubule assembly by anchoring γ-TuRCs to the pro-centriole at the onset of daughter centriole formation.Several fundamental aspects of motion vision circuitry are prevalent across flies and mice. Both taxa segregate ON and OFF signals. For any given spatial pattern, motion detectors in both taxa are tuned to speed, selective for one of four cardinal directions, and modulated by catecholamine neurotransmitters. These similarities represent conserved, canonical properties of the functional circuits and computational algorithms for motion vision. Less is known about feature detectors, including how receptive field properties differ from the motion pathway or whether they are under neuromodulatory control to impart functional plasticity for the detection of salient objects from a moving background. Here, we investigated 19 types of putative feature selective lobula columnar (LC) neurons in the optic lobe of the fruit fly Drosophila melanogaster to characterize divergent properties of feature selection. We identified LC12 and LC15 as feature detectors. LC15 encodes moving bars, whereas LC12 is selective for the motion of discrete objects, mostly independent of size. Neither is selective for contrast polarity, speed, or direction, highlighting key differences in the underlying algorithms for feature detection and motion vision. We show that the onset of background motion suppresses object responses by LC12 and LC15. Surprisingly, the application of octopamine, which is released during flight, reverses the suppressive influence of background motion, rendering both LCs able to track moving objects superimposed against background motion. Our results provide a comparative framework for the function and modulation of feature detectors and new insights into the underlying neuronal mechanisms involved in visual feature detection.A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.

Autoři článku: Searsmccann1824 (Nymand Olesen)