Scottrossen2103
This study demonstrates the development of topotecan (TCN) loaded thermosensitive nanocargos (TCN-TS-NC) for intramuscular (IM) administration with enhanced antitumor activity. In this regards, TCN loaded temperature dependent solid lipid nanoparticles (SLNs) were prepared with micro-emulsion method, which were then incorporated into temperature sensitive poloxamer solution to develop TCN-TS-NC. The particle size, entrapment efficiency (%EE), zeta potential and transmission electron microscopy (TEM) analysis of the TCN-TS-NC were performed. Moreover, the inject-ability, release pattern, apoptosis, cellular uptake, pharmacokinetics and antitumor studies of the TCN-TS-NC were attained and compared with TCN solution and TCN-Emulgel (poloxamer solution containing TCN). At room temperature, the TCN loaded SLNs were solid and poloxamer solution remains liquid, however, TCN loaded SLNs melted to liquid and Emulgel converted into gel from, at body temperature, resulting controlled release of the incorporated drug. The TCN-TS-NC showed enhanced cellular uptake and better apoptosis. Similarly, it reduces Cmax and sustained its level for a significantly longer time in rats, as compared to the TCN-Emulgel and TCN solution. Moreover, a significantly improved antitumor activity was observed in TCN-TS-NC treated tumor bearing athymic nude mice when compared with the control, TCN solution and TCN-Emulgel applied mice. Thus, the TCN-TS-NC system showed control release of the drug with no initial fast effect. Furthermore, it enhanced the antitumor activity of TCN with comparatively no toxicity. It is therefore concluded that TCN-TS-NC could be a potentially more suitable drug delivery system for the delivery of TCN.Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Dendrobium chrysotoxum Lindl, a well-known traditional Chinese medicinal herb used in the treatment of gastric disease, is distinguished as the first of the "nine immortal grasses". Dendrobium chrysotoxum Lindl and the traditional Chinese medicine prescriptions containing Dendrobium chrysotoxum Lindl are often prescribed clinically to treat chronic gastritis and precancerous lesions of gastric cancer (PLGC), showing favorable clinical effects and medicinal value in the prevention of gastric cancer. However, the effective ingredients and pharmacological mechanisms through which Dendrobium chrysotoxum Lindl prevents and treats PLGC have not been adequately identified or interpreted.
The present study aimed to evaluate the effective ingredients and pharmacological mechanisms of Dendrobium chrysotoxum Lindl in the prevention and treatment of PLGC using network pharmacology. In addition, in vitro verification was performed to evaluate the mechanism of action of Erianin, the main active ingredient in Dendrobiumtment of PLGC. Our results suggest that Erianin may be a promising candidate in the development of prevention and treatment methods for PLGC. This study provided experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl to treat PLGC and prevent gastric cancer.
This study explained the positive characteristics of multi-component, multi-target, and multi-approach intervention with Dendrobium chrysotoxum Lindl in the treatment of PLGC. Our results suggest that Erianin may be a promising candidate in the development of prevention and treatment methods for PLGC. This study provided experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl to treat PLGC and prevent gastric cancer.
Artemisia argyi H.Lév. & Vaniot is known as the longevity grass in eastern countries for its warm effect to cure many cold diseases. It has been widely used in medicine, food, bathing, moxibustion, and fumigation for more than two thousand years. ASN002 Nowadays it even becomes the cultural symbol of the Dragon Boat Festival. In traditional application, A. argyi is considered to be an important hemostatic drug and a common drug for gynecological diseases. In modern application, the Artemisia argyi H.Lév. & Vaniot essential oil (AAEO) is regarded as the important medicinal substance of A. argyi, and has been made into many health products, forming a large-scale A. argyi industry.
This review aims to summarize the research status of AAEO and evaluate its application value. The manuscript focuses on the reported extraction methods, chemical components and influencing factors, pharmacological action, and toxicity.
In the literature search, several databases, such as Google Scholar, Science Direct, PubMed, exact mechanism of action remains to be elucidated.
Present review provides an insight into chemical composition, extraction method, quality influencing factors, pharmacological action and toxicological action of AAEO. As an important traditional medicine herb, remarkable efficacy has been demonstrated in comprehensive literature reports, which has shown the great medicinal potential of this plant. However, the toxicity of AAEO cannot be ignored, the exact mechanism of action remains to be elucidated.
The overall therapeutic effect of traditional Chinese medicine formulae (TCMF) was achieved by the interactions of multiple components with multiple targets. However, current pharmacology research strategies have struggled to identify effective substance groups and encountered challenges in elucidating the underlying mechanisms of TCMF.
In this study, a comprehensive strategy was proposed and applied to elucidate the interactions of the multiple components that underlie the functions of the famous TCMF Xian-Ling-Gu-Bao (XLGB) capsule on bone metabolism in vivo and to elucidate the molecular mechanisms underlying the effects of XLGB on bone cells, especially on osteoblasts.
The efficacy of XLGB in the protection against bones loss in ovariectomized (OVX) rats was confirmed by Micro-CT analysis. The anti-osteoporosis mechanism involved in the systemic regulatory actions of XLGB was elucidated by transcriptome sequencing analysis on bone marrow mesenchymal stem cells isolated from OVX rats. Moreover, the cediction and experimental validation confirmed the binding affinity of corylin and icaritin for estrogen receptor α and β, the inhibitory activity of isobavachin and isobavachalcone on glycogen synthase kinase-3β, and the inhibitory activity of isobavachalcone on cathepsin K. The cell-based assay further confirmed the result of the biochemical assay. A network that integrated absorbed components of XLGB-targets-perturbation genes-pathways against osteoporosis was established.
Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.
Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.
Radiation therapy is a commonly used treatment for prostate cancer; however, the side effects may negatively affect quality of life and cause patients to be less physically active. Although exercise has been shown to mitigate radiation therapy-related fatigue in men with prostate cancer during radiation therapy, other adverse effects of treatment such as physical deconditioning, urinary symptoms, or sexual dysfunction have not been systematically reviewed in this patient population. Thus, the purpose of this review was to investigate the effect of exercise on physical function and treatment-related side effects in men with prostate cancer undergoing radiation therapy.
A systematic literature search was conducted in the PubMed, Embase, CINAHL Plus, SPORTDiscus, and Web of Science databases in December 2020. Included studies were randomized controlled trials examining the effects of aerobic and/or resistance exercise interventions on measures of physical function and treatment-related side effects in prostaated side effects are less clear and require further investigation.
Based on the current evidence, exercise in men with prostate cancer undergoing radiation therapy improves physical function and mitigates urinary toxicity. The effect of exercise on other treatment-related side effects are less clear and require further investigation.Conspecific animals living in multiple habitats may utilize different behaviours to survive and thrive in their environments. The Pacific rattlesnake (Crotalus oreganus), a generalist pit viper species, lives in a myriad of habitat types. We hypothesized that populations inhabiting hot, inland habitats and those in cool, coastal habitats would exhibit different behavioural strategies, especially those related to thermoregulation. Additionally, we determined whether environmental factors could be used as predictors of certain behaviours. We recorded environmental and behavioural data while radio-tracking adult, male rattlesnakes from two inland sites and two coastal sites throughout their active season. We found significant differences in thermoregulatory behaviour, with coastal snakes found more frequently above ground and in an active state than inland snakes. Additionally, wind, cloud cover, and air temperature were significant predictors of several snake behaviours. These results suggest that rattlesnakes exhibit plasticity in thermoregulatory behaviour.The global spread of SARS-CoV-2 has made millions ill with COVID-19 and even more from the economic fallout of this pandemic. Our quest to test new therapeutics and vaccines require small animal models that replicate disease phenotypes seen in COVID-19 cases. Rodent models of SARS-CoV-2 infection thus far have shown mild to moderate pulmonary disease; mortality, if any, has been associated with prominent signs of central nervous system (CNS) infection and dysfunction. Here we describe the isolation of SARS-CoV-2 variants with propensity for either pulmonary or CNS infection. Using a wild-type SARS-CoV-2 isolated from a COVID-19 patient, we first found that infection was lethal in transgenic mice expressing the human angiotensin I-converting enzyme 2 (hACE2). Fortuitously, full genome sequencing of SARS-CoV-2 from the brain and lung of these animals showed genetic differences. Likewise, SARS-CoV-2 isolates from brains and lungs of these also showed differences in plaque morphology. Inoculation of these brain and lung SARS-CoV-2 isolates into new batch of hACE2 mice intra-nasally resulted in lethal CNS and pulmonary infection, respectively.