Schwartzbrooks4776
This study aimed at better understanding the neurochemistry underlying transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ± 5.4 years old) participated in a double-blind, crossover, placebo-controlled study, where participants underwent TMS and MRS two hours after drug intake (placebo or lorazepam; 2.5 mg). Neuronavigated TMS measures reflecting cortical inhibition and excitation were obtained in the left primary motor cortex. Sensorimotor cortex and occipital cortex MRS data were acquired using a 3T scanner with a MEGA-PRESS sequence, allowing water-referenced [GABA] and [Glx] (glutamate + glutamine) quantification. Lorazepam administration decreased occipital [GABA], decreased motor cortex excitability and increased GABAA-receptor mediated motor cortex inhibition (short intracortical inhibition (SICI)). Lorazepam intake did not modulate sensorimotor [GABA] and TMS measures of intra-cortical facilitation, long-interval cortical inhibition, cortical silent period, and resting motor threshold. Furthermore, higher sensorimotor [GABA] was associated with higher cortical inhibition (SICI) following lorazepam administration, suggesting that baseline sensorimotor [GABA] may be valuable in predicting pharmacological or neuromodulatory treatment response. Finally, the differential effects of lorazepam on MRS and TMS measures, with respect to GABA, support the idea that TMS measures of cortical inhibition reflect synaptic GABAergic phasic inhibitory activity while MRS reflects extrasynaptic GABA.Primates are long-lived, highly social mammals who maintain long-term social bonds and cohesive social groups through many affiliative mechanisms, foremost among them social touch. From birth through adulthood, social touch - primarily mutual grooming - creates and maintains relationships of trust and reliance, which are the basis for individual physical and emotional well-being and reproductive success. Because social touch helps to establish, maintain, and repair social alliances in primates, it contributes to the emotional stability of individuals and the cohesion of social groups. In these fundamental ways, thus, social touch supports the slow life histories of primates. The reinforcing neurochemistry of social touch insures that it is a pleasurable activity and this, in turn, makes it a behavioral commodity that can be traded between primates for desirable rewards such as protection against future aggression or opportunities to handle infants. Social touch is essential to normal primate development, and individuals deprived of social touch exhibit high levels of anxiety and lower fertility compared to those receiving regular social touch. Understanding the centrality of social touch to primate health and well-being throughout the lifespan provides the foundation for appreciating the importance of social touch in human life.Neurogenesis in the subgranular zone (SGZ) of the adult hippocampus can be stimulated by a variety of means, including via exposure of experimental animals to an enriched environment that provides additional sensory, social, and motor stimulation. Tangible health and cognitive benefits accrue in enriched animals, including the amelioration of signs modelling psychiatric, neurological and neurodegenerative conditions that affect humans, which may in part be due to enhanced production of neurons. A key factor in the neuronal response to enrichment is the release of brain-derived neurotrophic factor (BDNF) and the activation of the Mitogen-Activated Protein Kinase (MAPK) cascade, which can lead to the stimulation of neurogenesis. Mitogen- and Stress-Activated protein Kinase 1 (MSK1) is a nuclear enzyme downstream of BDNF and MAPK that regulates transcription. MSK1 has previously been implicated in both basal and stimulated neurogenesis on the basis of studies with mice lacking MSK1 protein. In the present study, using mice in which only the kinase activity of MSK1 is lacking, we show that the rate of cellular proliferation in the SGZ (Ki-67 staining) is unaffected by the MSK1 kinase-dead (KD) mutation, and no different from controls levels after five weeks of enrichment. However, compared to wild-type mice, the number of doublecortin (DCX)-positive cells was greater in both standard-housed and enriched MSK1 KD mice. These observations suggest that, while MSK1 does not influence the basal rate of proliferation of neuronal precursors, MSK1 negatively regulates the number of cells destined to become neurons, potentially as a homeostatic control on the number of new neurons integrating into the dentate gyrus.Every year the Alzheimer's Association publishes a report that provides facts and figures indicating the public health, social and economic impact of Alzheimer's disease (AD). In addition, there are a number of reviews on the disease for general readers. Also, at congresses, AD is analyzed at different but not always related levels, leading to an "elephant as seen by blind men situation" for many of the participants. The review presented herein seeks to provide readers with a holistic view of how AD develops from various perspectives the whole human organism, brain, circuits, neurons, cellular hallmarks, and molecular level.Retinitis pigmentosa (RP) is a heterogeneous group of retinal degenerative diseases in which the final pathological feature is photoreceptor cell apoptosis. Currently, the pathogenesis of RP remains poorly understood and therapeutics are ineffective. 17β-Oestradiol (βE2) is universally acknowledged as a neuroprotective factor in neurodegenerative diseases and has manifested neuroprotective effects in a light-induced retinal degeneration model. Recently, we identified N-myc downstream regulated gene 2 (NDRG2) suppression as a molecular marker of mouse retinal photoreceptor-specific cell death. βE2 has also been reported to regulate NDRG2 in salivary acinar cells. selleck compound Therefore, in this study, we investigated whether βE2 plays a protective role in RP and regulates NDRG2 in photoreceptor cells. To this end, we generated RP models and observed that βE2 not only reduced the apoptosis of photoreceptor cells, but also restored the level of NDRG2 expression in RP models. Then, we showed that siNDRG2 inhibits the anti-apoptotic effect of βE2 on photoreceptor cells in a cellular RP model. Subsequently, we used a classic oestrogen receptor (ER) antagonist to attenuate the effects of βE2, suggesting that βE2 exerted its effects on RP models via the classic ERs. In addition, we performed a bioinformatics analysis, and the results indicated that the reported oestrogen response element (ERE) sequence is present in the promoter region of the mouse NDRG2 gene. Overall, our results suggest that βE2 attenuated the apoptosis of photoreceptor cells in RP models by maintaining NDRG2 expression via a classic ER-mediated mechanism.Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance. Recently, we demonstrated that pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, significantly down-regulated LRP1 in human primary microvascular endothelial cells (MVECs). In this study, we sought to determine the underlying molecular mechanism by which IL-1β led to LRP1 loss in MVECs. Reduced LRP1 protein and transcript were detected up to 24 h post-exposure and returned to the baseline levels after 48 h post-exposure with 1 ng/ml IL-1β. This reduction was in part mediated by microRNA-205-5p, -200b-3p, and -200c-3p, as these microRNAs were concomitantly upregulated in MVECs exposed to IL-1β. Synthetic microRNA-205-5p, -200b-3p, and -200c-3p mimics recapitulated LRP1 loss in MVECs without IL-1β, and their synthetic antagomirs effectively reversed IL-1β-mediated LRP1 loss. Importantly, we found that the expression of these three microRNAs was controlled by NF-κB as pharmacological NF-κB inhibitor, BMS-345541, inhibited the IL-1β-mediated upregulation of these microRNAs and rescued LRP1 expression. siRNA-mediated silencing of IκB in MVECs elevated microRNA-200b-3p and decreased LRP1 transcript, partially confirming our overall findings. In conclusion, our study provides a mechanism by which pro-inflammatory IL-1β instigates the suppression of LRP1 expression in MVECs. Our findings could implicate spatiotemporal loss of LRP1 and impairment of the LRP1-mediated clearance mechanism by endothelial cells.Demyelination is a well-known pathological process in CNS disorders such as multiple sclerosis (MS). It provokes progressive axonal degeneration and functional impairments and no efficient therapy is presently available to combat such insults. Recently, we have shown that etazolate, a pyrazolopyridine compound and an α-secretase activator, was able to promote myelin protection and remyelination after cuprizone (CPZ)-induced acute demyelination in C57Bl/6 mice. In continuation of this work, here we have further investigated the effects of etazolate treatment after acute cuprizone-induced demyelination at the molecular level (expression of myelin genes Plp, Mbp and Mag and inflammatory markers Il-1β, Tnf-α) and at the functional level (locomotor and spatial memory skills) in vivo. To this end, we have employed two protocols which consists of administering etazolate (10 mg/kg/d) for a period of 2 weeks either during (Protocol #1) or after (Protocol #2) 5-weeks of CPZ-induced demyelination. At the molecular level, we observed that CPZ intoxication altered inflammatory and myelin gene expression and it was not restored with either of the etazolate treatment protocols. At the functional level, the locomotor activity was impaired after 3-weeks of CPZ intoxication (Protocol #1) and our data indicates a modest but beneficial effect of etazolate treatment. Spatial memory evaluated was not affected either by CPZ intake or etazolate treatment in both protocols. Altogether, this study shows that the beneficial effect of etazolate upon demyelination does not occur at the gene expression level at the time points studied. Furthermore, our results also highlight the difficulty in revealing functional sequelae following CPZ intoxication.Tau is a microtubule-associated protein that serves as a promoter of microtubule assembly and stability in neuron cells. In a collective group of neurodegenerative diseases called tauopathies, tau processing is altered as a result of gene mutations and post-translational modifications. In particular, in Alzheimer's disease (AD) or AD-like conditions, tau becomes hyperphosphorylated and forms toxic aggregates inside the cell. The chaperone heat shock protein 90 (Hsp90) plays an important role in the proper folding, degradation, and recycling of tau proteins and tau kinases. Hsp90 has many co-chaperones that aid in tau processing. In particular, a few of these co-chaperones, such as FK506-binding protein (FKBP) 51, protein phosphatase (PP) 5, cell division cycle 37 (Cdc37), and S100A1 have family members that are reported to affect Hsp90-mediated tau processing in either a similar or an opposite manner. Here, we provide a holistic review of these selected co-chaperones and their family proteins and introduce a novel Hsp90-binding Cdc37 relative, Cdc37-like-1 (Cdc37L1 or L1) in tau regulation.