Schneidermoon3337

Z Iurium Wiki

Mutant and WT BKT2 gene sequences did not differ. Taken together, we conclude that BKT1 is the key gene involved in ketocarotenoid biosynthesis in C. zofingiensis. Our study provides insight into the biosynthesis of ketocarotenoids in green algae. Furthermore, Cz-bkt1 mutants may serve as a natural source for the production of zeaxanthin, lutein, and β-carotene. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.The Lateral Organ Boundaries Domain (LBD) genes encode highly conserved plant-specific LOB domain proteins which regulate growth and development in various species. However, members of the LBD gene family have yet to be identified in Brassica rapa var. rapa. In the present study, fifty-nine LBD genes were identified and distributed on 10 chromosomes. The BrrLBD proteins are predicted to encode hydrophobic polypeptides between 118 and 394 amino acids in length and with molecular weights ranging from 13.31 to 44.24 kDa; the theoretical pI for these proteins varies from 4.83 to 9.68. There were 17 paralogous gene pairs in the BrrLBD family, suggesting that the amplification of the BrrLBD gene family involved large-scale gene duplication events. Members of the BrrLBD family were divided into 7 subclades (class I a to e, class II a and b). Analysis of gene structure and conserved domains revealed that most BrrLBD genes of the same subclade had similar gene structures and protein motifs. The expression profiles of 59 BrrLBD genes were determined through Quantitative Real-time fluorescent PCR (qRT-PCR). Most BrrLBD genes in the same subclade had similar gene expression profiles. However, the expression patterns of 7 genes differed from their duplicates, indicating that although the gene function of most BrrLBD genes has been conserved, some BrrLBD genes may have undergone evolutionary change. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.Understanding the responses of crops to elevated atmospheric carbon dioxide concentrations (E[CO2]) is very important in terms of global food supplies. The present study investigates the effects of CO2 enrichment (to 800 μmol mol-1) on the physiology of soybean plants and the nutritional value of their seeds under growth chamber conditions. The photosynthesis of soybean was significantly promoted by E[CO2] at all growth stages, but leaf area and specific leaf weight were not affected. The levels of mineral elements in the leaves decreased under E[CO2]. The soil properties after soybean cultivation under E[CO2] were not affected, except for a decrease in available potassium. Moreover, the levels of soluble sugars in the seeds were not affected by E[CO2], but the levels of natural antioxidants decreased. In addition, the level of oleic acid decreased under E[CO2]. However, levels of fatty acid peroxidation and saturation were maintained. In conclusion, E[CO2] appears to have positive effects on the growth of cultivated soybean plants, but its influence on the nutritional values of soybean seeds is complex. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.This paper presents the results of the field study on species composition, geographical distribution, phytocoenotic diversity and resources of crop wild relatives (CWR) in Kazakhstan's ranges of the Tien Shan Mountains. Taxa of not only cultivated genera of crops are taken into account, but also a wider range of species of high socio-economic importance, including medicinal, fodder, essential oil and other species. List of CWR includes 289 species belonging to 39 families and 145 genera. Among them, 9 species listed in the Red Data book of Kazakhstan Pistacia vera, Rheum wittrockii, Armeniaca vulgaris, Malus sieversii, Allium pskemense, Allochrusa gypsophilloides, Sorbus sibirica, Vitis vinifera and Artemisia cina. The highest plant diversity is recorded in intermountain plains and river valleys where meadow vegetation forms a high abundance of forage and resource plants. The diversity of wild fruit plants is concentrated in gallery forests. CWR of cereals are confined to dry steppe slopes in low piedmont belt. learn more The populations of almond, pistachio, plum and cherry were recorded at dry slopes of low mountain belt. The estimation of the raw material base for 13 resource plants is given. Only Rumex tianschanicus, Berberis sphaerocarpa are recommended for industrial harvesting; for local pharmacy chain - Mentha longifolia, Origanum vulgare, O. vulgare subsp. gracile, Ziziphora clinopodioides, Hypericum scabrum, Hypericum perforatum, and five Rosa species. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.Cycas panzhihuaensis L. Zhou & S. Y. Yang (Cycadaceae) is an endangered gymnosperm species endemic to the dry-hot valley of the Jinsha River basin in southwest China. Although the wild C. panzhihuaensis population from Panzhihua Cycad Natural Reserve is well protected and its genetic diversity has been well assessed, the genetic characteristics of populations outside the nature reserve, which face larger risks of extinction, remain unknown. Furthermore, the population genetics and historical dynamics of this endemic and endangered species have not been examined across its entire range. In this study, to analyze the genetic diversity, phylogeographical structure and demographic history of C. panzhihuaensis from all its seven known locations, we sequenced and compared molecular data from chloroplastic DNA (psbA-trnH, psbM-trnD, and trnS-trnG), single-copy nuclear genes (PHYP, AC5, HSP70, and AAT) from 61 individuals, as well as 11 nuclear microsatellite loci (SSR) from 102 individuals. We found relatively high genetic diversity within populations and high genetic differentiation among populations of C. panzhihuaensis, which is consistent with the patterns of other Asian inland cycads. Although no significant phylogeographical structure was detected, we found that small and unprotected populations possess higher genetic diversity and more unique haplotypes, which revises our understanding of diversity within this species and deserves due attention. Analysis of demographic dynamics suggest that human activity might be the key threat to C. panzhihuaensis. Based on the genetic characterization of C. panzhihuaensis, we propose several practical guidelines for the conservation of this species, especially for the populations with small sizes. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.Functional trait variation of plant species includes both inter- and intraspecific variation; however, trait-based plant ecology generally considers only interspecific variation while ignoring intraspecific variation. One reason for this neglect is that intraspecific variation may be negligible when compared to interspecific variation; however, direct comparisons between inter- and intraspecific variation of plant species are lacking, especially in tropical forests. Here we investigated intraspecific leaf trait variation (leaf area, specific leaf area, leaf thickness, leaf density, leaf chlorophyll content) of Pittosporopsis kerrii Craib (Icacinaceae), the most abundant tree species in the Xishuangbanna tropical seasonal rainforest in southwestern China, along an elevational gradient (703-824 m). We found a substantial range of intraspecific variation in P. kerrii that was never less than 22.1% of range of the interspecific variation among 462 tree species reported before in the same community. Moreover, with increased elevation, both leaf thickness and density increased and specific leaf area decreased significantly. It could be more important for the individuals of P. kerrii to produce thicker and denser leaves to tolerate environmental stress (e.g. soil water availability) rather than having high growth rates at the places with higher elevation in the Xishuangbanna tropical seasonal rainforest. © 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.As the basis for managing the risks of chemical exposure, the Chemical Risk Assessment (CRA) process can impact a substantial part of the economy, the health of hundreds of millions of people, and the condition of the environment. However, the number of properly assessed chemicals falls short of societal needs due to a lack of experts for evaluation, interference of third party interests, and the sheer volume of potentially relevant information on the chemicals from disparate sources. In order to explore ways in which computational methods may help overcome this discrepancy between the number of chemical risk assessments required on the one hand and the number and adequateness of assessments actually being conducted on the other, the European Commission's Joint Research Centre organised a workshop on Artificial Intelligence for Chemical Risk Assessment (AI4CRA). The workshop identified a number of areas where Artificial Intelligence could potentially increase the number and quality of regulatory risk management decisions based on CRA, involving process simulation, supporting evaluation, identifying problems, facilitating collaboration, finding experts, evidence gathering, systematic review, knowledge discovery, and building cognitive models. Although these are interconnected, they are organised and discussed under two main themes scientific-technical process and social aspects and the decision making process. © 2019 The Authors.Objective The underlying hypothesis in orthostatic intolerance (OI) syndromes is that symptoms are associated with cerebral blood flow (CBF) reduction. Indirect CBF measurements (transcranial Doppler flow velocities), provide inconsistent support of this hypothesis. The aim of the study was to measure CBF during a 30 min head-up tilt test (HUT), using Doppler flow imaging of carotid and vertebral arteries, in individuals with chronic fatigue syndrome/myalgic encephalomyelitis (ME/CFS), a condition with a high prevalence of OI. Methods 429 ME/CFS patients were studied 247 had a normal heart rate (HR) and blood pressure (BP) response to HUT, 62 had delayed orthostatic hypotension (dOH), and 120 had postural orthostatic tachycardia syndrome (POTS). We also studied 44 healthy controls (HC). CBF measurements were made at mid-tilt and end-tilt. Before mid-tilt, we administered a verbal questionnaire to ascertain for 15 OI symptoms. Results End-tilt CBF reduction was 7% in HC versus 26% in the overall ME/CFS group, 24% in patients with a normal HR/BP response, 28% in those with dOH, and 29% in POTS patients (all P  less then  .

Autoři článku: Schneidermoon3337 (Forbes Ford)