Schmittcheng5280

Z Iurium Wiki

Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 μmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.A new iodide aluminum complex (AlI(κ4-naphbam), 3) supported by a tetradentate amidinate ligand derived from a naphthalene-1,8-bisamidine precursor (naphbamH, 1) was obtained in quantitative yield via reaction of the corresponding methyl aluminum complex (AlMe(κ4-naphbam), 2) with 1 equiv of I2 in CH2Cl2 at room temperature. Complexes 2 and 3 were tested and found to be active as catalysts for the cyclic carbonate formation from epoxides at 80 °C and 1 bar of CO2 pressure. A first series of experiments were carried out with 1.5 mol % of the alkyl complex 2 and 1.5 mol % of tetrabutylammonium iodide (TBAI) as a cocatalyst; subsequently, the reactions were carried out with 1.5 mol % of iodide complex 3 as a single-component catalyst. Compound 3 is one of the first examples of a nonzwitterionic halide single-component aluminum catalyst producing cyclic carbonates. The full catalytic cycle with characterization of all minima and transition states was characterized by quantum chemistry calculations (QCCs) using density functional theory. NSC 641530 concentration QCCs on the reaction mechanism support a reaction pathway based on the exchange of the iodine contained in the catalyst by 1 equiv of epoxide, with subsequent attack of I- to the epoxide moiety producing the ring opening of the epoxide. QCCs triggered new insights for the design of more active halide catalysts in future explorations of the field.2,4,5,6-Tetrakis(3,6-di-tert-butyl-9H-carbazol-9-yl)isophthalonitrile (4CzIPN- t Bu) was developed as a photocatalyst for the phosphorus-radical-initiated cascade cyclization reaction of isocyanides. By using 4CzIPN- t Bu as catalyst, we developed a visible-light-induced proton-coupled electron transfer strategy for the generation of phosphorus-centered radicals, via which a wide range of phosphorylated phenanthridines, quinolines, and benzothiazoles were successfully constructed.Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.In an in vitro nanotoxicity system, cell-nanoparticle (NP) interaction leads to the surface adsorption, uptake, and changes into nuclei/cell phenotype and chemistry, as an indicator of oxidative stress, genotoxicity, and carcinogenicity. Different types of nanomaterials and their chemical composition or "corona" have been widely studied in context with nanotoxicology. However, rare reports are available, which delineate the details of the cell shape index (CSI) and nuclear area factors (NAFs) as a descriptor of the type of nanomaterials. In this paper, we propose a machine-learning-based graph modeling and correlation-establishing approach using tight junction protein ZO-1-mediated alteration in the cell/nuclei phenotype to quantify and propose it as indices of cell-NP interactions. We believe that the phenotypic variation (CSI and NAF) in the epithelial cell is governed by the physicochemical descriptors (e.g., shape, size, zeta potential, concentration, diffusion coefficients, polydispersity, and so on) of the different classes of nanomaterials, which critically determines the intracellular uptake or cell membrane interactions when exposed to the epithelial cells at sub-lethal concentrations. The intrinsic and extrinsic physicochemical properties of the representative nanomaterials (NMs) were measured using optical (dynamic light scattering, NP tracking analysis) methods to create a set of nanodescriptors contributing to cell-NM interactions via phenotype adjustments. We used correlation function as a machine-learning algorithm to successfully predict cell and nuclei shapes and polarity functions as phenotypic markers for five different classes of nanomaterials studied herein this report. The CSI and NAF as nanodescriptors can be used as intuitive cell phenotypic parameters to define the safety of nanomaterials extensively used in consumer products and nanomedicine.Recently, metal-organic framework (MOF)-based electrospun fibers have attracted considerable attention as adsorbents for organic contaminant removal from water. To prepare these fibers, two common strategies including blending electrospinning and surface coating are employed. link2 However, fibers obtained from the two strategies still have some disadvantages, such as adsorption site blockage and unstable loading. Here, we constructed interconnected mesopores in the electrospun zeolitic imidazolate framework-8 (ZIF-8)/polyacrylonitrile (PAN) fibers with the assistance of poly(vinylpyrrolidone) to expose more adsorption sites of ZIF-8 and make ZIF-8 more stable. link3 Moreover, the mesopores could also enhance the diffusion of contaminant molecules and create MOF-polymer interfaces in the fiber, which improve the adsorption rate and adsorption capacity, respectively. The obtained fibers were used to adsorb antibiotic tetracycline from water. Benefiting from the mesoporous adsorption channels and the MOF-polymer interface, porous ZIF-8/PAN fibers showed faster adsorption kinetics than ZIF-8/PAN blending fibers and larger adsorption capacity than ZIF-8-coated PAN fibers and ZIF-8/PAN blending fibers. The maximum adsorption capacity of porous ZIF-8/PAN fibers was 885.24 mg/g, which is close to that of pure ZIF-8. After 10 adsorption-desorption cycles, the removal efficiency was still above 97%. In addition, porous ZIF-8/PAN fibers could act as the membrane adsorbents to dynamically separate tetracycline with a treated capacity of 9.93 × 103 bed volumes. These results demonstrate that our prepared porous ZIF-8/PAN fibers have great potential in antibiotic drug removal.Although it is known that the solar irradiation of chromophoric dissolved organic matter (CDOM) solutions generates H2O2, whether or not organic hydroperoxides (ROOHs) are photochemically formed remains unclear. This study employs high-performance liquid chromatography with the postcolumn enzymatic derivatization method to examine whether ROOHs can be formed in CDOM solutions under simulated solar irradiation. Methylhydroperoxide (MHP) is the only identified ROOH under our experimental conditions, and the quantum yields of MHP (ΦMHP) vary from (1.09 ± 0.09) × 10-6 to (4.95 ± 0.11) × 10-6 in the tested CDOM solutions, including four reference natural organic matters and two effluent organic matters. The quantum yields of H2O2 (ΦH2O2) are simultaneously measured, and the ratios of ΦH2O2 to ΦMHP range from 147 to 676. The formation of MHP is highly related to the presence of superoxide radical ions (O2•-) and methyl radicals (CH3•); therefore, a photoformation mechanism of MHP has been proposed. The photochemically generated CH3• reacts with O2 to yield CH3OO•. Subsequently, CH3OO• is reduced to MHP by O2•-. Our results also suggest that the yield of CH3• to MHP under air-saturated conditions is 52% and increases to 98% under oxygen-saturated conditions. The decays of MHP and H2O2 are very similar in terms of photodegradation, hydrolysis, Fenton, and photo-Fenton reactions. This study can be useful to understand the photochemical formation of organic peroxides in surface waters.The assemblies of plasmonic nanoparticles (NPs) are the universal methods for enhancing their surface-enhanced Raman scattering (SERS) activities. However, the present methods suffer from the problems of poor reproducibility, complicated fabrication, or the adsorption of ligands on the surface, which limit their practical applications. In this work, by using a facile freeze-thaw method, we are able to fabricate the assemblies of Ag NPs with highly reproducible SERS activity without the use of ligands. Moreover, the Ag NPs can be well kept in a frozen state for a long time with few influences on the reproducibility (relative standard deviation, RSD ca. 7%), while those kept in colloid (4 °C) suffer from gradual surface oxidation and aggregation. Such a simple freeze-thaw method does not require the introduction of any ligands (or linkers) with long-term stability and reproducibility, implying its wide applications in practical SERS sensing.Molecular doping is a powerful tool to tune the thermoelectric (TE) properties of solution-processed semiconductors. In this work, we prepared a binary composite and effectively doped both of its constituents, that is, naphthalene diimide-bithiophene copolymers (PNDI2OD-T2) and single-walled carbon nanotubes (SWCNTs), by a 1H-benzimidazole derivative (N-DMBI). The doped composites show an n-type character and an in-plane TE figure of merit (ZT), exceeding the values obtained with the doped polymers. The use of SWCNTs consistently results in a higher σ with a maximum value above 102 S/cm, resulting in the highest power factor of 18.1 μW/mK2 for an SWCNT loading of 45.5 wt %. Furthermore, an SWCNT content up to 9 wt % does not compromise the low thermal conductivity of the polymer matrices, leading to a ZT value of 0.0045. The n-type composites show good solution processability and relatively stable Seebeck coefficients upon air exposure for 8 months.

Autoři článku: Schmittcheng5280 (Reimer Justesen)