Scarboroughyork8931

Z Iurium Wiki

In this study, chlorogenic acid (CA) was acylated with vinyl esters of different carbon chain lengths under the action of the lipase Lipozyme RM. Five CA derivatives (C2-CA, C4-CA, C6-CA, C8-CA, and C12-CA) with different lipophilicities were obtained, and their digestive stabilities and antioxidant activities were evaluated. The lipophilicities were positively correlated with the digestive stabilities of CA derivatives. The antioxidant activities of CA derivatives did not change with the reduction of phenolic hydroxyl groups, and their capacity to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) were similar to those of CA. In cellular antioxidant activity (CAA) tests, it was found that the capacity of these derivates to cross cell membranes were enhanced upon enhancing lipophilicity, and their antioxidant activities were improved. C12-CA showed the best antioxidant activity with a median effective dose (EC50) of 9.40 μg/mL, which was significantly lower than that of CA (i.e., 29.08 μg/mL).The leather of Caiman latirostris is highly appreciated in the fashion industry and the meat is valued as an important food but its fat are usually discarded because it has no commercial value. However it is an alternative source of essential fatty acids and could be used for human consumption. The aim was to optimize the oil extraction from Caiman latirostris fat and to carry out the chemical and microbiological characterization for its use as food supplement. The oil obtained by fusion method contains fatty acids with high nutritional quality such as oleic acid (34%), linoleic acid (30%) and α-linolenic acid (2%). The atherogenicity index was 0.29 and the thrombogenicity index 0.47. The presence of mesophilic aerobic bacteria, coliform bacteria, Escherichia coli and Salmonella were not observed, and the oil is stable for 4 months at 25 °C and for at least 8 months in an inert atmosphere at 25 °C.The novel core-shell microparticles were fabricated to deliver curcumin by using hydrophobic zein microparticles as the core and hydrophilic cellulose nanocrystals (CNCs) as the shell. Different concentrations (0.10-1.50%, w/v) of CNCs were utilized to regulate the microstructure, physicochemical stability, and in vitro digestion of the core-shell microparticles. The size of the microparticles ranged from 1017.3 to 3663.7 nm. Electrostatic attraction and hydrophobic interactions were responsible for the assembly of zein-CNCs core-shell microparticles. The microstructure of the microparticles was dependent on the CNCs level. The retention rate of curcumin in the core-shell microparticles was increased by 76.41% after UV radiation. Furthermore, the rise of CNCs level delayed the release of curcumin from the microparticles in gastrointestinal tract and reduced its bioaccessibility. The potential of utilizing hydrophilic nanoparticles was explored to stabilize hydrophobic microparticles through interparticle interactions, which was useful to develop the novel core-shell microparticles for the application in functional foods.Conventional food fermentation is time-consuming, and maturation of fermented foods normally requires a huge space for long-term storage. Ultrasound is a technology that emerged in the food industry to improve the efficacy of food fermentation and presents great potentials in maturation of fermented foods to produce fermented foods with high quality. Ivacaftor cell line Proliferation of microorganisms was observed along with promoted enzyme activities and metabolic performance when treated by a short-term ultrasonication ( less then 30 min) at a relatively low-power (≤100 W). Additionally, ultrasound at a high-power level (≥100 W) was highlighted to promote the maturation of fermented foods through promoting Maillard reaction, oxidation, esterification, and proteolysis. As a result of promoted fermentation and maturation, texture, color, flavor and taste of fermented foods were improved. All the reviewed studies have indicated that ultrasound at the proper conditions would be a promising technique to produce fermented foods with high-quality.In the past five years, more than 8000 scientific reports have been published on honey composition and its potential bioactivity as a source of pro-health components. However, the potential effectiveness of nutrients and other compounds in the human body is greatly influenced by the individual digestion conditions. Consequently, changes in the structure of honey components and their interactions with other constituents are expected and they may affect the bioaccessibility, the bioavailability, and further physiological functions of honey nutrients and bioactives. In this context, in addition to present key physiological characteristics for each step of the human digestion and their simulation aspects, this review also summarizes and discusses available data regarding the effect of the digestion (in vitro and in vivo) on honey compounds. Additionally, we consider the influence of the digestion on biological activities described for the compounds in the honey.Quinoa has a long history of cultivation and unique nutritional value. Quinoa sprouts can be eaten as leafy vegetables, but their nutritional quality is unknown. Ten quinoa sprout varieties (lines) were evaluated and compared for nutrient and functional composition. All quinoa sprout varieties had high contents of moisture content, reducing sugar, potassium, magnesium, and vitamin C. All varieties contained all essential amino acids, with leucine present in abundance. They had high contents of phenolics, flavonoids, carotenoids (β-carotene and lycopene) as well as chlorophylls a and b. Overall, var. LL-01 had better nutrient and phytochemical composition than other varieties. The potential nutritionalhealth benefits of quinoa sprouts as a vegetable are important for both traditional and contemporary diets.

To determine the safety of tipifarnib in combination with escalating doses of bortezomib and to determine the maximum tolerated dose in patients with untreated high-risk MDS and oligoblastic acute myeloid leukemia, who were not eligible for intensive therapy.

In a "3 + 3″ design, patients received fixed doses of tipifarnib 200 mg bid (days 1-21) and escalating doses of bortezomib (days 8, 15, 22) every 4 weeks in 4-6 cycles.

The combination was tolerated well by the 11 patients in this study without reaching the maximum tolerated dose. Myelosuppression was the most frequent side effect, but usually of short duration. Interestingly a complete response with or without complete count recovery was observed in three patients and three additional patients had stable disease. The median duration of overall survival was 449 days. Two patients were still alive at 4.0 and 4.3 years, including one patient in continuing CR.

The combination of tipifarnib and bortezomib was tolerated well and appeared to have clinical activity in patients with high-risk MDS and AML with low counts of marrow blasts.

Autoři článku: Scarboroughyork8931 (Jansen Ritchie)