Sauerbengtsen5378
Pb exposure reduced the brood size, number of broods and total neonates per female in F3-F9, yet the reproduction could recover in pPb treatment until F7. No recovery of the brood size and number of broods per female was observed in pPb-exposed animals in the F8-F9. Our study suggests that long-term exposure to metals, here Pb, may cause irreversible impairments in morphology and reproduction of tropical urban micro-crustaceans that may lower the top-down control on algal blooms and functioning of eutrophic urban lakes.Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.Air pollution constitutes the greatest environmental threat to human health in the European Union. In Poland, the emission of particulate matter and harmful gases originating from local coal based boiler plants and the combustion of fuels in residential heating appliances is a considerable source of air pollution. The combustion of fuel in home furnaces is inefficient due to the use of cheap fuels of low heating parameters and the frequent addition of waste. For the purpose of the research, deciduous tree wood pellets were selected as the basic fuel with the admixture of plastic waste, rubber, waste paper, wood residues, diapers, textile waste, multi-material packaging, construction waste, biomass and alternative fuel (RDF). Examining ash samples to confirm the practices of combusting or co-combusting waste materials in heating appliances is considered to be one of the most reliable detection methods; however, the results of direct research require further data processing. The application of hierarchical clustering analysis to the obtained results arranged into a matrix enabled in a simple way to demonstrate the similarities between the examined samples of fuel and the samples of fuel mixed with waste materials in the parameters space as well as to analyze the similarities among the measured parameters (the content of particular elements in ash) in the space of the examined samples. The application of chemometric methods for the purpose of identifying the combusted fuels, and, in particular the co-combusted waste complements the currently used monitoring tools which control the use of low quality fuels or the combustion of waste of different origin.Epidemiological research on the adverse health outcomes due to PM2.5 exposure frequently relies on measurements from regulatory air quality monitors to provide ambient exposure estimates, whereas personal PM2.5 exposure may deviate from ambient concentrations due to outdoor infiltration and contributions from indoor sources. Research in quantifying infiltration factors (Finf), the fraction of outdoor PM2.5 that infiltrates indoors, has been historically limited in space and time due to the high costs of monitor deployment and maintenance. Recently, the growth of openly accessible, citizen-based PM2.5 measurements provides an unprecedented opportunity to characterize Finf at large spatiotemporal scales. In this analysis, 91 consumer-grade PurpleAir indoor/outdoor monitor pairs were identified in California (41 residential houses and 50 public/commercial buildings) during a 20-month period with around 650000 h of paired PM2.5 measurements. An empirical method was developed based on local polynomial regression to estimate site-specific Finf. The estimated site-specific Finf had a mean of 0.26 (25th, 75th percentiles [0.15, 0.34]) with a mean bootstrap standard deviation of 0.04. The Finf estimates were toward the lower end of those reported previously. A threshold of ambient PM2.5 concentration, approximately 30 μg/m3, below which indoor sources contributed substantially to personal exposures, was also identified. The quantified relationship between indoor source contributions and ambient PM2.5 concentrations could serve as a metric of exposure errors when using outdoor monitors as an exposure proxy (without considering indoor-generated PM2.5), which may be of interest to epidemiological research. The proposed method can be generalized to larger geographical areas to better quantify PM2.5 outdoor infiltration and personal exposure.Pesticides and trace elements occur in complex mixtures in agroecosystems, affecting soil health and food security. Hence, it is necessary to determine their toxicity in field conditions and to develop monitoring approaches to assess conventional and organic agriculture. The aim of this research was to evaluate the associations between Allium cepa L. cytogenetic biomarkers and the realistic mixture of pesticides and trace elements found in soils of conventional, conversion, and organic crops in an intensive agricultural region in Colombia. Pesticide screening was conducted using GC-MS/MS and LC-MS/MS methods. Arsenic, cadmium, lead, and zinc were analyzed by ICP-MS; chromium, copper, nickel, and selenium by ICP-OES; and mercury by a direct analyzer. The meristematic cells in roots of Allium cepa L. were analyzed through microscopic observations to quantify cytogenetic effects. In conventional crops, 26 pesticides were detected in the soil samples, and those were below the limit of quantification in organic crops. The mean levels of As, Cd, Cr, Ni, Pb, and Se were also greater in soils of conventional crops compared to the organics. In addition, the biomarkers of cytotoxicity and genotoxicity appeared augmented in conventional samples, and those were correlated with pesticide and trace element concentrations, pollution indices, and hazard quotients. Subsequently, a discriminant function based on the mitotic index, chromosomal aberrations, and nuclear abnormalities was suitable to classify the samples by crop type. These results demonstrate the sensitivity of Allium cepa L. to the toxicity of complex mixtures in field crops and its potential as an in-situ approach for soil health monitoring in organic and conventional crop systems.People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. However, the association between long-term exposure to air pollutants, which increases cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We collected data of confirmed COVID-19 cases during the first wave of the epidemic in mainland China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as the outcome, and long-term average air pollutant levels as the exposure. Our analysis was adjusted using several variables, including a mobile phone dataset, covering human movement from Wuhan before the travel ban and movements within each city during the period of the emergency response. Other variables included smoking prevalence, climate data, socioeconomic data, education level, and number of hospital beds for 324 cities in China. After adjusting for human mobility and socioeconomic factors, we found an increase of 37.8% (95% confidence interval [CI] 23.8%-52.0%), 32.3% (95% CI 22.5%-42.4%), and 14.2% (7.9%-20.5%) in the number of COVID-19 cases for every 10-μg/m3 increase in long-term exposure to NO2, PM2.5, and PM10, respectively. However, when stratifying the data according to population size, the association became non-significant. The present results are derived from a large, newly compiled and geocoded repository of population and epidemiological data relevant to COVID-19. The findings suggested that air pollution may be related to population vulnerability to COVID-19 infection, although the extent to which this relationship is confounded by city population density needs further exploration.Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season.