Sandovalbarr2520

Z Iurium Wiki

We present a class of broadband electromagnetic Gaussian Schell-model sources whose state of polarization is both uniform and identical for all frequencies, but whose far-zone polarization properties strongly depend on wavelength. Also, these sources can produce beams whose polarized portion is always linearly polarized but with a polarization angle that evolves on propagation. Our results offer new insights into the behavior of broadband partially coherent sources.We investigate stimulated four-wave mixing (FWM) in the 6S1/2-6P3/2-8S1/2 open transition of a warm 133Cs atomic ensemble. Despite the absence of the two-photon cycling transition, we measure high-contrast FWM signals in the 6P3/2-8S1/2 transition between the upper excited states according to the frequency detuning and powers of the coupling and driving lasers. SGC 0946 chemical structure The FWM light generation in the upper excited states is interpreted as the FWM phenomena induced by the driving laser of the 6S1/2-6P3/2 transition from the cascade-type two-photon coherent atomic ensemble with the coupling and pump lasers. We believe that this work can contribute to the development of hybrid photonic quantum networks between photonic quantum states generated from different atomic systems.A compact full-color electro-holographic three-dimensional (3-D) display with undersampled computer-generated holograms (US-CGHs) and oblique projection imaging (OPI) is proposed. For its realization, undersampling conditions of the CGH enabling the complete recovery of image information are derived, and the OPI-based longitudinal-to-lateral depth conversion (LTL-DC) scheme allowing the simple reconstruction of full-color images is also proposed. Three-color off-axis US-CGHs are generated with their center-shifted principle fringe patterns (CS-PFPs) of the novel look-up table (NLUT) method, where center-shifts are calculated with the derived undersampling conditions of the CGH based on the generalized sampling theorem, and then multiplexed into the color-multiplexed hologram (CMH). The CMH is loaded on a SLM (spatial light modulator) and reconstructed by being illuminated with a multi-wavelength light source, where an original full-color image is reconstructed being spatially separated from the other color-dispersed images on the projected image plane with the OPI-based LTL-DC process, which enables us to view the original full-color image just with a simple filter mask. Performance analysis and successful experiments with the test 3-D objects in motion confirm the feasibility of the proposed system.It is challenging to obtain nanoscale resolution images in a single ultrafast shot because a large number of photons, greater than 1011, are required in a single pulse of the illuminating source. We demonstrate single-shot high resolution Fourier transform holography over a broad 7 µm diameter field of view with ∼ 5 ps temporal resolution. The experiment used a plasma-based soft X-ray laser operating at 18.9 nm wavelength with nearly full spatial coherence and close to diffraction-limited divergence implemented utilizing a dual-plasma amplifier scheme. A Fresnel zone plate with a central aperture is used to efficiently generate the object and reference beams. Rapid numerical reconstruction by a 2D Fourier transform allows for real-time imaging. A half-pitch spatial resolution of 62 nm was obtained. This single-shot nanoscale-resolution imaging technique will allow for real-time ultrafast imaging of dynamic phenomena in compact setups.We propose a novel scheme for 3D sensing or Lidar without the need for beam scan or 2D photo-imaging. The scheme is enabled by the combination of a lens' position-to-angle conversion and the wavelength division multiplexing/demultiplexing (WDM) commonly used in optical fiber communication systems. However, unlike in a WDM system where different wavelengths carry different data channels, here lights of different wavelengths are demultiplexed into different waveguides or fibers with their exiting ends placed in the focal plane of the lens, which converts the exiting lights into beams of different angles to form a 1D or 2D beam array according to the relative position of the fiber ends with respect to the optical axis of the lens for illuminating the targets and finally sensing the light reflected from different directions. The returned signals are then demultiplexed into different photodetectors to determine the distances of the reflections in different directions. We show that the scheme has the potential to be implemented in photonics integrated circuit (PIC) for low cost production. We successfully demonstrate the scheme with the off-the-shelf discrete fiber optic components using 4 WDM channels and time-of-flight (ToF) technique for distance measurement, although hundreds wavelength channels from a photonic integrated microcomb may be used in practice. Finally, we demonstrate that the angular resolution of the beam array of different wavelengths can be improved by dithering the fiber array or the lens. We believe this new scheme provides an attractive alternative to the MEMS and optical phased array based beam scanning and can be explored further to enable low cost and high speed 3D sensing, particularly Lidar systems.We demonstrate all-optical modulation and ultrafast detection using an on-resonance optical gain medium, combined with spectral splitting in a Fourier transform pulse shaper. Multiple spectral channels of one optical beam can be independently modulated in time by another beam, allowing high-rate modulation and multiplexing without requiring ultrafast response from the gain medium. For detection of sub-picosecond signals we demonstrate a method of ultrafast signal detection (temporal imaging with no spatial resolution) that utilizes the spatio-temporal tilt of an optical pulse in a pulse shaper. The proposed methods can find applications in optical information technology and ultrafast imaging.We propose a novel method to perform plenoptic imaging at the diffraction limit by measuring second-order correlations of light between two reference planes, arbitrarily chosen, within the tridimensional scene of interest. We show that for both chaotic light and entangled-photon illumination, the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field. In particular, the depth of field results larger by a factor 3 with respect to previous correlation plenoptic imaging protocols, and by an order of magnitude with respect to standard imaging, while the resolution is kept at the diffraction limit. The results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination, thus contributing to make correlation plenoptic imaging effectively competitive with commercial plenoptic devices.

Autoři článku: Sandovalbarr2520 (McGee Ritter)