Sandersmercer5993

Z Iurium Wiki

Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or those who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACT. MTS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACT was performed in immunocompetent mice bearing the orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytometry. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta-24-ACT administration as an effective and safe therapeutic strategy for patients with local and metastatic osteosarcoma. These results support clinical translation of this viral immunotherapy approach.Targeting the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway with immunotherapy has revolutionized the treatment of many cancers. Somatic tumor mutational burden (TMB) and T-cell-inflamed gene expression profile (GEP) are clinically validated pan-tumor genomic biomarkers that can predict responsiveness to anti-PD-1/PD-L1 monotherapy in many tumor types. read more We analyzed the association between these biomarkers and the efficacy of PD-1 inhibitor in 11 commonly used preclinical syngeneic tumor mouse models using murinized rat anti-mouse PD-1 DX400 antibody muDX400, a surrogate for pembrolizumab. Response to muDX400 treatment was broadly classified into three categories highly responsive, partially responsive, and intrinsically resistant to therapy. Molecular and cellular profiling validated differences in immune cell infiltration and activation in the tumor microenvironment of muDX400-responsive tumors. Baseline and on-treatment genomic analysis showed an association between TMB, murine T-cell-inflamed gene expression profile (murine-GEP), and response to muDX400 treatment. We extended our analysis to investigate a canonical set of cancer and immune biology-related gene signatures, including signatures of angiogenesis, myeloid-derived suppressor cells, and stromal/epithelial-to-mesenchymal transition/TGFβ biology previously shown to be inversely associated with the clinical efficacy of immune checkpoint blockade. Finally, we evaluated the association between murine-GEP and preclinical efficacy with standard-of-care chemotherapy or antiangiogenic agents that previously demonstrated promising clinical activity, in combination with muDX400. Our profiling studies begin to elucidate the underlying biological mechanisms of response and resistance to PD-1/PD-L1 blockade represented by these models, thereby providing insight into which models are most appropriate for the evaluation of orthogonal combination strategies.Advanced prostate cancer will often progress to a lethal, castration-resistant state. We previously demonstrated that IKKε expression correlated with the aggressiveness of prostate cancer disease. Here, we address the potential of IKKε as a therapeutic target in prostate cancer. We examined cell fate decisions (proliferation, cell death, and senescence) in IKKε-depleted PC-3 cells, which exhibited delayed cell proliferation and a senescent phenotype, but did not undergo cell death. Using IKKε/TBK1 inhibitors, BX795 and Amlexanox, we measured their effects on cell fate decisions in androgen-sensitive prostate cancer and androgen-independent prostate cancer cell lines. Cell-cycle analyses revealed a G2-M cell-cycle arrest and a higher proportion of cells with 8N DNA content in androgen-independent prostate cancer cells only. Androgen-independent prostate cancer cells also displayed increased senescence-associated (SA)-β-galactosidase activity; increased γH2AX foci; genomic instability; and altered p15, p16, and p21 expression. In our mouse model, IKKε inhibitors also decreased tumor growth of androgen-independent prostate cancer xenografts but not 22Rv1 androgen-sensitive prostate cancer xenografts. Our study suggests that targeting IKKε with BX795 or Amlexanox in androgen-independent prostate cancer cells induces a senescence phenotype and demonstrates in vivo antitumor activity. These results strengthen the potential of exploiting IKKε as a therapeutic target.Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179. OKI-179 and its cell active predecessor OKI-005 are thioester prodrugs of the active metabolite OKI-006, a unique congener of the natural product HDAC inhibitor largazole. OKI-006, OKI-005, and subsequently OKI-179, were developed through a lead candidate optimization program designed to enhance physiochemical properties without eroding potency and selectivity relative to largazole. OKI-005 displays antiproliferative activity in vitro with induction of apoptosis and increased histone acetylation, consistent with target engagement. OKI-179 showed antitumor activity in preclinical cancer models with a favorable pharmacokinetic profile and on-target pharmacodynamic effects. Based on its potency, desirable class I HDAC inhibition profile, oral bioavailability, and efficacy against a broad range of solid tumors, OKI-179 is currently being evaluated in a first-in-human phase I clinical trial with plans for continued clinical development in solid tumor and hematologic malignancies.

The median kidney transplant half-life is 10-15 years. Because of the scarcity of donor organs and immunologic sensitization of candidates for retransplantation, there is a need for quantitative information on if and when a second transplantation is no longer associated with a lower risk of mortality compared with waitlisted patients treated by dialysis. Therefore, we investigated the association of time on waiting list with patient survival in patients who received a second transplantation versus remaining on the waiting list.

In this retrospective study using target trial emulation, we analyzed data of 2346 patients from the Austrian Dialysis and Transplant Registry and Eurotransplant with a failed first graft, aged over 18 years, and waitlisted for a second kidney transplantation in Austria during the years 1980-2019. The differences in restricted mean survival time and hazard ratios for all-cause mortality comparing the treatment strategies "retransplant" versus "remain waitlisted with maintenance diag time.

CALGB 80405 compared the combination of first-line chemotherapy with cetuximab or bevacizumab in the treatment of advanced or metastatic colorectal cancer (mCRC). Although similar clinical outcomes were observed in the cetuximab-chemotherapy group and the bevacizumab-chemotherapy group, biomarkers could identify patients deriving more benefit from either biologic agent.

In this exploratory analysis, the Angiome, a panel of 24 soluble protein biomarkers were measured in baseline plasma samples in CALGB 80405. Prognostic biomarkers were determined using univariate Cox proportional hazards models. Predictive biomarkers were identified using multivariable Cox regression models including interaction between biomarker level and treatment.

In the total population, high plasma levels of Ang-2, CD73, HGF, ICAM-1, IL6, OPN, TIMP-1, TSP-2, VCAM-1, and VEGF-R3 were identified as prognostic of worse progression-free survival (PFS) and overall survival (OS). PlGF was identified as predictive of lack of PFS benefit from bevacizumab [bevacizumab HR, 1.51; 95% confidence interval (CI), 1.10-2.06; cetuximab HR, 0.94; 95% CI, 0.71-1.25;



= 0.0298] in the combined FOLFIRI/FOLFOX regimens. High levels of VEGF-D were predictive of lack of PFS benefit from bevacizumab in patients receiving FOLFOX regimen only (FOLFOX/bevacizumab HR, 1.70; 95% CI, 1.19-2.42; FOLFOX/cetuximab HR, 0.92; 95% CI, 0.68-1.24;



= 0.0097).

In this exploratory, hypothesis-generating analysis, the Angiome identified multiple prognostic biomarkers and two potential predictive biomarkers for patients with mCRC enrolled in CALGB 80405. PlGF and VEGF-D predicted lack of benefit from bevacizumab in a chemo-dependent manner.

In this exploratory, hypothesis-generating analysis, the Angiome identified multiple prognostic biomarkers and two potential predictive biomarkers for patients with mCRC enrolled in CALGB 80405. PlGF and VEGF-D predicted lack of benefit from bevacizumab in a chemo-dependent manner.

CALGB 90206 was a phase III trial of 732 patients with metastatic renal cell carcinoma (mRCC) comparing bevacizumab plus IFNα (BEV + IFN) with IFNα alone (IFN). No difference in overall survival (OS) was observed. Baseline samples were analyzed to identify predictive biomarkers for survival benefit.

A total of 32 biomarkers were assessed in 498 consenting patients randomly assigned into training (

= 279) and testing (

= 219) sets. The proportional hazards model was used to test for treatment arm and biomarker interactions of OS. The estimated coefficients from the training set were used to compute a risk score for each patient and to classify patients by risk in the testing set. The resulting model was assessed for predictive accuracy using the time-dependent area under the ROC curve (tAUROC).

A statistically significant three-way interaction between IL6, hepatocyte growth factor (HGF), and bevacizumab treatment was observed in the training set and confirmed in the testing set (

< 0.0001). The model based on IL6, HGF, and bevacizumab treatment was predictive of OS (

< 0.001), with the high- and low-risk groups having a median OS of 10.2 [95% confidence interval (CI), 8.0-13.8] and 34.3 (95% CI, 28.5-40.5) months, respectively. The average tAUROC for the final model of OS based on 100 randomly split testing sets was 0.78 (first, third quartiles = 0.77, 0.79).

IL6 and HGF are potential predictive biomarkers of OS benefit from BEV + IFN in patients with mRCC. The model based on key biological and clinical factors demonstrated predictive efficacy for OS. These markers warrant further validation in future anti-VEGF and immunotherapy in mRCC trials.

IL6 and HGF are potential predictive biomarkers of OS benefit from BEV + IFN in patients with mRCC. The model based on key biological and clinical factors demonstrated predictive efficacy for OS. These markers warrant further validation in future anti-VEGF and immunotherapy in mRCC trials.

Autoři článku: Sandersmercer5993 (Stiles Mcgowan)