Salomonsenkloster7119

Z Iurium Wiki

Fusarium head blight (FHB), a fungus disease of small grain cereal crops, results in reduced yields and diminished value of harvested grain due to the presence of deoxynivalenol (DON), a mycotoxin produced by the causal pathogen Fusarium graminearum. DON and other tricothecene mycotoxins pose serious health risks to both humans and livestock, especially swine. Due to these health concerns, barley used for malting, food or feed is routinely assayed for DON levels. Various methods are available for assaying DON levels in grain samples including enzyme-linked immunosorbent assay (ELISA) and gas chromatography-mass spectrometry (GC-MS). ELISA and GC-MS are very accurate; however, assaying grain samples by these techniques are laborious, expensive and destructive. In this study, we explored the feasibility of using hyperspectral imaging (382-1030 nm) to develop a rapid and non-destructive protocol for assaying DON in barley kernels. Samples of 888 and 116 from various genetic lines were selected for calibration annon-destructive DON assays of barley samples.The maturity level of eggs during pickling is conventionally assessed by choosing few eggs from each curing batch to crack open. Yet, this method is destructive, creates waste and has consequences for financial losses. In this work, the feasibility of integrating electronic nose (EN) with reflectance hyperspectral (RH) and transmittance hyperspectral (TH) data for accurate classification of preserved eggs (PEs) at different maturation periods was investigated. Classifier models based solely on RH and TH with EN achieved a training accuracy (93.33%, 97.78%) and prediction accuracy (88.89%; 93.33%) respectively. The fusion of the three datasets, (EN + RH + TH) as a single classifier model yielded an overall training accuracy of 98.89% and prediction accuracy of 95.56%. Also, 52 volatile compounds were obtained from the PE headspace, of which 32 belonged to seven functional groups. SP2509 chemical structure This study demonstrates the ability to integrate EN with RH and TH data to effectively identify PEs during processing.The stability and bioavailability of fourteen astaxanthin esters (Asta-Es) with different molecular structures were investigated using in vitro and in vivo digestion models. The results demonstrated that Asta-E with long-chain and saturated fatty acids were more stable than other types of Asta-E. Astaxanthin diester (Asta-DE) was better than astaxanthin monoester (Asta-ME) and free astaxanthin (F-Asta), as determined based on the degradation rate constant at 60 °C. The absorbability of Asta-Es with different molecular structures was evaluated through the serum concentrations of astaxanthin (Asta). The results indicated that Asta-E with short-chain fatty acids had higher bioavailability than Asta-Es with long-chain fatty acids, whereas Asta-E with high-unsaturation fatty acids had higher bioavailability than Asta-E with low-unsaturation fatty acids. Asta-ME had significantly increased bioavailability compared with Asta-DE. We concluded that the molecular structure of Asta-E could significantly affect their stability and bioavailability.Cyanidin-3-glucoside is a major anthocyanin in legumes, black rice, and purple potato, and has anti-inflammatory and antioxidant properties. In the present study, the effect of acylation on cyanidin-3-glucoside lipophilicity, stability, and antioxidant capacity was investigated. Cyanidin-3-glucoside was enzymatically acylated through transesterification with fatty acid esters to produce three monoacylated cyanidin-3-glucoside esters, cyanidin-3-(6″-n-octanoyl)-glucoside, cyanidin-3-(6″-lauroyl)-glucoside, and cyanidin-3-(6″-myristoyl)-glucoside. Cyanidin-3-(6″-n-octanoyl)-glucoside had the highest thermostability and photostability of the three cyanidin-3-glucoside esters. While the in vitro antioxidant activity of cyanidin-3-(6″-n-octanoyl)-glucoside was 7.5%-14.3% lower than that of cyanidin-3-glucoside (p less then 0.05), its cellular antioxidant activity increased by 33.3% (p less then 0.05). Further, while cyanidin-3-(6″-lauroyl)-glucoside had lower stability and in vitro antioxidant activity than that of cyanidin-3-(6″-n-octanoyl)-glucoside, its cellular antioxidant capacity was 125.9% and 69.4% higher than cyanidin-3-glucoside and cyanidin-3-(6″-n-octanoyl)-glucoside, respectively (p less then 0.05). This study demonstrated that transesterification can be used to improve the stability and in vivo antioxidant activity of cyanidin-3-glucoside.Impacts of atmospheric cold plasma (ACP) on the properties of muscle protein and performance of extracted crude enzyme of hairtail (Trichiurus Lepturus) fish have been evaluated. A decrease in extracted crude enzyme activity with increasing the ACP treatment time has been found, and the highest reduction (p less then 0.05) value of 0.035 units/mg proteins was obtained after 240 s. A considerable increase in the carbonyl content in the treated sample for about three times higher than the control sample was found, and a decrease of total sulfhydryl content to 0.34 nmol/mg protein. Texture profile analysis, water holding capacity, and the color properties of the muscle protein improved significantly in the samples treated with ACP. SDS-PAGE pattern showed an increase in the band intensity of cross-linked myosin heavy chains and actin proteins. Based on these outcomes, ACP could play a significant role as a promising non-thermal method to prolong the shelf-life of hairtail fish.Micronutrients are the key factors to evaluate the nutritional quality of wheat. However, measuring micronutrients is time-consuming and expensive. In this study, the potential of hyperspectral imaging for predicting wheat micronutrient content was investigated. The spectral reflectance of wheat kernels and flour was acquired in the visible and near-infrared range (VIS-NIR, 375-1050 nm). Afterwards, wheat micronutrient contents were measured and their associations with the spectra were modeled. Results showed that the models based on the spectral reflectance of wheat kernel achieved good predictions for Ca, Mg, Mo and Zn (r2>0.70). The models based on the spectra reflectance of wheat flour showed good predictive capabilities for Mg, Mo and Zn (r2>0.60). The prediction accuracy was higher for wheat kernels than for the flour. This study showed the feasibility of hyperspectral imaging as a non-invasive, non-destructive tool to predict micronutrients of wheat.

Autoři článku: Salomonsenkloster7119 (Hunter Hyllested)