Sahlrindom6266
ults showed dynamic adaptive mechanisms of the Nellore sheep in relation to different stressors like grazing for long distances, inadequate nutrition, and heat stress, revealing the heat resilient ability in harsh environmental conditions. Further, the analyzed vector plot showed that the AST, GPx, Cortisol, SOD, Catalase, WBC, PR, T4, total abnormalities, and major abnormalities were the major contributors for adapting during combined stressors.The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1-5 N), microwave power (800-1200 W), temperature (80-180 °C) and extraction time (5-30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P less then 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g-1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.A phosphate glass Na2O-Nb2O5-P2O5 (NPP) is incorporated into NaNbO3 (NN) ceramics to examine its impact on the density, rearrangement of structural units, dielectric and energy storage features of the elaborated composites. The sodium niobate ceramic (NN) is prepared using the solid state process, whereas, the Na2O-Nb2O5-P2O5 (NPP) glasses are produced using the method of conventional melt quenching. The glass (NPP) is added to the ceramic (NN) according to the composition (100-x) NN-xNNP; (x = 0, 2.5, 5, and 7.5 %wt). The developed composites are denoted as NN-Gx where x represents the content of glass in %wt. The appropriate sintering temperature for the glass-ceramic composites was measured based on the density measurements. It was found that with the addition of glass, their density was decreased and their fritting at lower temperatures was enhanced. The obtained SST for all composites is about 900 °C. After the densification stage, Raman spectroscopy, X-ray Diffraction, Granulo-laser analysis, and scanning electron microscopy are examined to study the structural approach and the morphology of sintered NN-Gx composites. The NN-G5 composite was found to have a fine grain microstructure that was uniform. The dielectric features of the composite revealed that at ambient temperature the NN-G5 had the greatest dielectric constant. The energy storage performance of the composite was investigated from the P-E plots and the parameters of energy storage. https://www.selleckchem.com/products/jte-013.html Based on the obtained results, it was concluded that incorporating up to 5% wt. of NNP glass in sodium niobate ceramics positively affects their dielectric and energy storage performances.The present pilot study had the objective to determine the effects of transcutaneous and transmucosal laser irradiation on arterial blood pressure (ABP), glucose (Glu) triglycerides (Tg), total cholesterol (Ch), high-density level cholesterol (HDL) and low-density cholesterol (LDL) immediately after treatment (T0) and after 30 (T30) and 60 (T60) days. Patients (n = 36) were selected and randomly distributed into 6 groups (n = 6/group; [G1] negative control, [G2] radial artery transcutaneous laser irradiation [G3] radial artery transcutaneous irradiation, [G4] transmucosal sublingual irradiation, [G5] transmucosal intra-nasal irradiation and [G6] extended radial artery transcutaneous irradiation). Blood exams were performed at T0, T30 and T60. Systolic and diastolic pressure results have indicated that patients' pressures ranged from 90 mmHg (P22, T30, G4) to 189 mmHg (P16, T0, G3) and 54 mmHg (P21, T60, G4) to 175 mmHg (P16, T30, G3). Levels of Glu at T30 and T60 varied from 5.53% (G1) to -5.78% (G6) and 1.21 (G2) to -8.69 (G6), respectively. Data was statistically assessed for normality and homogeneity of variances using the F-statistic and Bartlett's tests. Significant differences were determined using One-Way ANOVA and Fischer post hoc tests. Results indicated that treatments investigated can be safely used as an adjunct method to regulate blood pressure, glucose, triglycerides and cholesterol.This study explores the main factors of economic growth in a panel of the world's 20 biggest economies considering the data period of 39 years (1980-2018). In particular, the roles of international trade, energy use, human capital, and foreign direct investment (FDI) are examined in addition to the roles of capital and labour. To estimate the results the panel autoregressive distributed lag (ARDL) method of Pool Mean Group (PMG) estimator and heterogeneous panel causality test are used with due consideration of cross sectional dependence test, cointegration test and other necessary diagnostic tests. The obtained results ratify the cointegration among the variables used. Energy use, trade, capital, labour, human capital development and foreign direct investment have positive and significant impacts on the economic growth of these countries in the long run. In the short run energy use, trade and capital also have positive and significant effects, but human capital has negative effect on economic growth. A bidirectional causal relationship between economic growth and trade, capital, labour and human capital, and a unidirectional causal link from economic growth to energy use and foreign direct investment are also found.