Rytterkehoe7625
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia. © 2020 Wiley Periodicals, Inc.The 22q11.2 deletion syndrome has an estimated prevalence of 1 in 4-6,000 livebirths. The phenotype varies widely; the most common features include facial dysmorphia, hypocalcemia, palate and speech disorders, feeding and gastrointestinal disorders, immunodeficiency, recurrent infections, neurodevelopmental and psychiatric disorders, and congenital heart disease. learn more Approximately 60-80% of patients have a cardiac malformation most commonly including a subset of conotruncal defects (tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B), conoventricular and/or atrial septal defects, and aortic arch anomalies. Cardiac patients with a 22q11.2 deletion do not generally experience higher mortality upon surgical intervention but suffer more peri-operative complications than their non-syndromic counterparts. New guidelines suggest screening for a 22q11.2 deletion in the patient with tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, conoventricular septal defects as well as those with an isolated aortic arch anomaly. Early identification of a 22q11.2 deletion in the neonate or infant when other syndromic features may not be apparent allows for timely parental screening for reproductive counseling and anticipatory evaluation of cardiac and noncardiac features. Screening the at-risk child or adult allows for important age-specific clinical, neurodevelopmental, psychiatric, and reproductive issues to be addressed. © 2020 Wiley Periodicals, Inc.Sensors are of increasing interest since they can be applied to daily life in different areas from various industrial sectors. As a natural nanomaterial, nanocellulose plays a vital role in the development of novel sensors, particularly in the context of constructing multidimensional architectures. This review summarizes the utilization of nanocellulose including cellulose nanofibers, cellulose nanocrystals, and bacterial cellulose for sensor design, mainly focusing on the influence of nanocellulose on the sensing performance of these sensors. Special attention is paid to nanocellulose in different forms (1D, 2D, and 3D) to highlight the impact of nanocellulose constructed structures. The aim is to provide a critical review on the most recent progress (especially after 2017) related to nanocellulose-containing sensors, since there are significantly increasing research activities in this area. Moreover, the outlook for the development of nanocellulose-containing sensors is also provided at the end of this work. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Designing elaborate nanostructures and engineering defects have been promising approaches to fabricate cost-efficient electrocatalysts toward overall water splitting. In this work, a controllable Prussian-blue-analogue-sacrificed strategy followed by an annealing process to harvest defect-rich Ni-Fe-doped K0.23 MnO2 cubic nanoflowers (Ni-Fe-K0.23 MnO2 CNFs-300) as highly active bifunctional catalysts for oxygen and hydrogen evolution reactions (OER and HER) is reported. Benefiting from many merits, including unique morphology, abundant defects, and doping effect, Ni-Fe-K0.23 MnO2 CNFs-300 shows the best electrocatalytic performances among currently reported Mn oxide-based electrocatalysts. This catalyst affords low overpotentials of 270 (320) mV at 10 (100) mA cm-2 for OER with a small Tafel slope of 42.3 mV dec-1 , while requiring overpotentials of 116 and 243 mV to attain 10 and 100 mA cm-2 for HER respectively. Moreover, Ni-Fe-K0.23 MnO2 CNFs-300 applied to overall water splitting exhibits a low cell voltage of 1.62 V at 10 mA cm-2 and excellent durability, even superior to the Pt/C||IrO2 cell at large current density. Density functional theory calculations further confirm that doping Ni and Fe into the crystal lattice of δ-MnO2 can not only reinforce the conductivity but also reduces the adsorption free-energy barriers on the active sites during OER and HER. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.The purpose of the current study was to determine whether aortic blood pressure (BP) and arterial stiffness are greater in patients with controlled resistant hypertension (RHTN) than controlled non-resistant hypertension (non-RHTN) despite similar clinic BP level. Participants were recruited from University of Alabama at Birmingham (UAB) Hypertension Clinic. Controlled hypertension was defined as automated office BP measurement with BP less then 135/85 mm Hg. A total of 141 participants were evaluated by pulse wave analysis (PWA) and carotid-femoral pulse wave velocity (cf-PWV). Among them, 75 patients had controlled RHTN with use of 4 or more antihypertensive medications and 56 patients had controlled non-RHTN with use of 3 or less antihypertensive medications. Compared to patients with controlled non-RHTN, those with controlled RHTN were more likely to be African American and had a higher prevalence of diabetes mellitus and congestive heart failure. The mean number of antihypertensive medications was greater in patients with controlled RHTN (4.