Russoalbrektsen4431

Z Iurium Wiki

5 in all seasons at site - III. All tested species had potential for cleaning Pb through their harvestable part (shoots) with A. stocksii as prominent candidate (16 mg kg-1) at site - I. Cressa cretica emerged as exclusive candidate for Zn phytoremediation (96 mg kg-1) at site - I, while S. fruticosa, A. macrostachyum and A. lagopoides showed bioaccumulation in pre-monsoon summers at site II. Aeluropus lagopoides with higher Mn in post monsoon summers (62 at site - III and 53 mg kg-1 at site - II) and Cr (7.1 mg kg-1 at site - II and 14 mg kg-1 at site - III) appeared exclusive bioindicator with potential of for cleaning all metals (Mn, Zn, Pb and Cr) at different sites. Metal bioaccumulation at study sites appeared species specific and varied seasonally among tested halophytes.Mangrove provides significant ecosystem services, however, 40% of tropical mangrove was lost in last century due to climate change induced sea-level rise and anthropogenic activities. Sundarban-India, the largest contiguous mangrove of the world lost 10.5% of its green during 1930-2013 which primarily converted to rice-based systems. Presently degraded mangrove and adjacent rice ecology in Sundarban-India placed side by side and create typical ecology which is distinct in nature in respect to soil physicochemical properties, carbon dynamics, and microbial diversities. We investigated the structural and functional diversities of bacteria and archaea through Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene approach that drives greenhouse gases emission and carbon-pools. Remote sensing-data base were used to select the sites for collecting the soil and gas samples. The methane and nitrous oxide emissions were lower in mangrove (-0.04 mg m-2 h-1 and -52.8 μg m-2 h-1) than rice (0.26 mg m-2 h-1 and 44.7 μg m-2 h-1) due to less availability of carbon-substrates and higher sulphate availability (85.8% more than rice). The soil labile carbon-pools were more in mangrove, but lower microbial activities were noticed due to stress conditions. A unique microbial feature indicated by higher methanotrophs methanogens (11.2), sulphur reducing bacteria (SRB) methanogens (93.2) ratios and lower functional diversity (7.5%) in mangrove than rice. These could be the key drivers of lower global warming potential (GWP) in mangrove that make it a green production system. Therefore, labile carbon build-up potential (38%) with less GWP (63%) even in degraded-mangrove makes it a clean production system than wetland-rice that has high potential to climate change mitigation. The whole genome metagenomic analysis would be the future research priority to identify the predominant enzymatic pathways which govern the methanogenesis and methanotrophy in this system.Based on laboratory studies and field observations, a new parameterization of uptake coefficients for heterogeneous reactions on multi-component aerosols is developed in this work. The equivalent ratio (ER) of inorganic aerosol is used to establish the quantitative relationship between the heterogeneous uptake coefficients and the composition of aerosols. Incorporating the new ER-dependent scheme, the WRF-CUACE model has been applied to simulate sulfate mass concentrations during December 2017 in the Beijing-Tianjin-Hebei region and evaluate the role of aerosol chemical components played in the sulfate formation. Simulated temporal variations and magnitudes of sulfate show good agreement with the observations by using this new scheme. From clean to polluted cases, although both dominant cations and anions increase significantly, the equivalent ratio decreases gradually and is closer to unity, representing the variation of aerosol compositions, which inhibits the heterogeneous uptake of SO2, with the uptake coefficient decreasing from 1 × 10-4 to 5.3 × 10-5. Based on this phenomenon, a self-limitation process for heterogeneous reactions with the increasing secondary inorganic aerosol from clean to polluted cases is proposed.During the past decades, a series of new policies and ecological projects have been implemented to mitigate land degradation on the Mongolian Plateau. However, climatic effects from re-vegetation still remain largely unknown. In this paper, we investigate local land surface temperature response to re-vegetation changes by comparing between locations with forest or grassland gains and their nearby unchanged land units based on satellite observations. Our results demonstrate that reforestation in humid regions and grassland cover gains in arid regions result in annual net cooling effect, but temperature response to reforestation shows asymmetric diurnal (daytime cooling but nighttime warming) and seasonal (summer cooling but winter warming during daytime) cycle. Local cooling effect of transition land cover is enhanced with continuous restoration of vegetation. The underlying process is mainly controlled by biophysical effects from surface albedo and evapotranspiration. Increased albedo associated with snow cover in winter significantly contributes to the cooling effect of grassland, and evapotranspiration along with increase in precipitation amplifies interannual temperature differences especially in summer. This study reminds that rational land use policy should be formulated carefully to realize potential climatic benefits from re-vegetation projects.The present investigation deals with the adsorptive removal of crude petroleum oil from the water surface using coconut oil-modified pinewood biochar. Biochar generated at higher pyrolysis temperature (700 °C) revealed higher fatty acid-binding efficiency responsible for the excellent hydrophobicity of the biochar. Fatty acids composition attached to the biochar produced at 700 °C was (mg g-1 BC) lauric acid (9.024), myristic acid (5.065), palmitic acid (2.769), capric acid (1.639), oleic acid (1.362), stearic acid (1.114), and linoleic acid (0.130). Simulation of the experimental adsorption data of pristine and modified pinewood biochar generated at 700 °C offered the best fit to pseudo-first-order kinetics (R2 > 0.97) and Langmuir isotherm model (R2 > 0.99) based on the highest regression coefficients. Consequently, the adsorption process was mainly driven by surface hydrophobic interactions including π-π electron-donor-acceptor between electron-rich (π-donor) polycyclic aromatic hydrocarbons from the crude oil and biochar (π-acceptor). A maximum adsorption capacity (Qmax) of 5.315 g g-1 was achieved by modified floating biochar within 60 min. Whereas the reusability testing revealed 49.39% and 51.40% was the adsorption efficiency of pristine and modified biochar at the fifth adsorption-desorption cycle.An increasingly powerful set of new CRISPR/Cas-based methods is becoming available for directed evolution of proteins in mammalian cells. Although in vitro techniques or microbial expression systems have been dominating directed evolution, there are now promising approaches to diversify proteins in mammalian cells in situ. This can be achieved by simple indel mutagenesis or more sophisticated homology repair mechanisms for cassette mutagenesis of coding sequences. Cas9 variant fusions to base editors and other effectors pose another promising way to introduce diversity into proteins. CRISPR/Cas9-based directed evolution in mammalian cells opens a new exciting era of discovery for the many classes of proteins for which a mammalian cellular context is preferable.Oncogenic protein farnesyltransferase (FTase) is a key enzyme responsible for the lipid modification of a large and important number of proteins including Ras, which has been recognized as a druggable target of diverse cancers. Here, we report a systematic scaffold-based analysis to investigate the affinity, selectivity and cross-reactivity of nonpeptide inhibitors across ontology-enriched, disease-associated FTase mutants, by integrating multiple similarity matching, binding affinity scoring and enzyme inhibition assay. It is revealed that nonpeptide inhibitors are generally insensitive to FTase mutations; many of them cannot definitely select for wild-type target over mutant enzymes. Therefore, off-target is observed as a common phenomenon for the untargeted consequence of targeted therapies with FTase inhibition. This is not unexpected if considering that the enzyme active site is highly conserved in composition, configuration and function. The off-target, on the one hand, causes nonpeptide inhibitors with adverse drug reactions and, on the other hand, makes the inhibitors as promising candidates for the new use of old drugs. To practice the latter, a number of unexpected mutant-inhibitor interactions involved in cancer signaling pathways are uncovered in the created profile, from which several nonpeptide inhibitors are identified as insensitive to a drug-resistant mutation. Structural analysis suggests that the inhibitor ligands can bind to the mutant active site in a similar manner with wild-type target, although their nonbonded interactions appear to be impaired moderately upon the mutation.

The goal of this study is to understand how very elderly patients (VEP) after ischemic stroke are currently treated in a Stroke Unit (SU) Hub in Italy. We designed a retrospective monocentric study on patients admitted in the SU of "AO San Camillo Forlanini" over an 8-year period.

Data were collected among patients with acute ischemic stroke admitted to SU between January 2012 and December 2019. Patients were divided into three sub-groups Adults (18-65 years); Elderly (66-85 years); and VEP (>85 years). Vascular risk factors and clinical variables as predictors of short-term clinical outcome were compared among age groups.

A total of 1979 patients were enrolled, 254 were VEP (12.8%). The proportion of VEP showed no significant modifications during the 8-year period (11.9% in 2012-2015 and 13.7% in 2016-2019; p=0.93). The proportion of women, hypertension and atrial fibrillation was significantly higher in VEP compared to other age groups (p<0.001). The rate of VEP being treated with rt-PA increased from 2012-2015 to 2016-2019 (from 12.8% to 25.5%, p<0.001). Endovascular thrombectomy was rarely performed in VEP (1.5% of VEP). Rt-PA treatment was associated with favorable outcome for all three age groups (p<0.05).

We showed that VEP present different vascular risk factor profiles, clinical features, and prognostic elements for short-term stroke outcome. Future studies will reveal whether we will observe an increasing trend in the use of rt-PA and endovascular thrombectomy and whether it will result in improved functional outcome for VEP.

We showed that VEP present different vascular risk factor profiles, clinical features, and prognostic elements for short-term stroke outcome. Future studies will reveal whether we will observe an increasing trend in the use of rt-PA and endovascular thrombectomy and whether it will result in improved functional outcome for VEP.

While telestroke 'hub-and-spoke' systems are a well-established model for improving acute stroke care at spoke facilities, utility beyond the hyperacute phase is unknown. In patients receiving intravenous thrombolysis via telemedicine, care at spoke facilities has been shown to be associated with longer length of stay and worse outcomes. We sought to explore the impact of ongoing stroke care by a vascular neurologist via telemedicine compared to care provided by local neurologists.

A network spoke facility protocol was revised to pilot telestroke consultation with a hub vascular neurologist for all patients presenting to the emergency department with ischemic stroke or transient ischemic attack regardless of time since onset or severity. Subsequent telestroke rounds were performed for patients who received initial telestroke consultation. Key outcome measures were length of stay, 30-day readmission and mortality and 90-day mRS. Results during the pilot (post-cohort) were compared to the same hospital's previous outcomes (pre-cohort).

Of 257 enrolled patients, 67% were in the post-cohort. Forty percent (69) of the post-cohort received an initial telestroke consult. In spoke-retained patients followed by telestroke rounds (55), median length of stay decreased by 0.8 days (P=0.01). Readmission and mortality rates did not differ significantly between groups (19.5 vs. 9.1%, P=0.14 and 3.9 vs. 3.6%, P=1, respectively). The favorable functional outcome rate was similar between groups (47.3% vs 65.9%, P=0.50).

Longitudinal stroke care via telestroke may be economically viable through length of stay reduction. Randomized prospective studies are needed to confirm our findings and further investigate this model's potential benefits.

Longitudinal stroke care via telestroke may be economically viable through length of stay reduction. Randomized prospective studies are needed to confirm our findings and further investigate this model's potential benefits.

This study examined the clinical features, functional outcomes, and prognostic indicators of acute ischemic stroke (AIS) patients who had an Alberta Stroke Program Early Computed Tomography Score (ASPECTS) ≤ 5 and who underwent mechanical thrombectomy (MT).

We included consecutive AIS patients with ASPECTS ≤ 5 who had received MT at the same hospital. Demographic, clinical, and radiological data were collected and analyzed. Functional outcome at 90 days after treatment was classified as good or poor based on the modified Rankin Scale (mRS).

Of the 152 included patients with ASPECTS ≤ 5 who received MT, 64 (42.11%) experienced poor functional outcomes and 32 (21.1%) experienced good functional outcomes. The independent predictors of poor functional outcomes were the presence of respiratory tract infections (OR 3.72, 95% CI 1.17-11.91), modified thrombolysis in cerebral infarction (OR 0.41, 95% CI 0.2-0.83), symptomatic intracerebral hemorrhage (sICH) (OR 4.96, 95% CI 1.36-18.13), and baseline score on the National Institute of Health Stroke Scale (NIHSS) (OR 1.18, 95% CI 1.03-1.36). Independent predictors of 90-day mortality included time from groin puncture to recanalization (OR 1.03, 95% CI 1.01-1.05), NIHSS scores (OR 1.28, 95% CI 1.12-1.47) and the occurrence of sICH (OR 1.81, 95% CI 1.25-5.75).

AIS patients with ASPECTS ≤ 5 can experience good functional outcomes after MT. However, patients with sICH, respiratory infection, higher NIHSS score or failed recanalization are more likely to experience poor functional outcomes.

AIS patients with ASPECTS ≤ 5 can experience good functional outcomes after MT. However, patients with sICH, respiratory infection, higher NIHSS score or failed recanalization are more likely to experience poor functional outcomes.

The present study aimed to examine the effectiveness of proton magnetic resonance spectroscopy (1HMRS) in determining the progression of neurological symptoms resulting in acute ischemic stroke in patients with lenticulostriate artery (LSA) infarction.

1HMRS was performed within 72h after neurological symptom onset. Voxel of interest was placed in tissue that included the pyramidal tract and identified diffusion weighted echo planar spin-echo sequence (DWI) coronal images. Infarct volume in DWI was calculated using the ABC/2 method. 1HMRS data (tNAA, tCr, Glx, tCho, and Ins) were analyzed using LCModel. Progressive neurological symptoms were defined as an increase of 1 or more in the NIHSS score. Patients who underwent 1HMRS after progressive neurological symptoms were excluded.

In total, 77 patients were enrolled. Of these, 19 patients had progressive neurological symptoms. The patients with progressive neurological symptoms were significantly more likely to be female and had higher tCho/tCr values, higher rates of axial slices ≥ 3 slices on DWI, higher infarct volume on DWI, higher maximum diameter of infarction of axial slice on DWI, and higher SBP on admission compared to those without. Multivariable logistic analysis revealed that higher tCho/tCr values were independently associated with progressive neurological symptoms after adjusting for age, sex, and initial DWI infarct volume (tCho/tCr per 0.01 increase, OR 1.26, 95% CI 1.03-1.52, P=0.022).

Increased tCho/tCr score were associated with progressive neurological symptoms in patients with LSA ischemic stroke. Quantitative evaluation of 1HMRS parameters may be useful for predicting the progression of neurological symptoms.

Increased tCho/tCr score were associated with progressive neurological symptoms in patients with LSA ischemic stroke. Quantitative evaluation of 1HMRS parameters may be useful for predicting the progression of neurological symptoms.A persistent primitive olfactory artery (PPOA) is a rare anomaly of anterior cerebral artery (ACA), which generally arises from the internal carotid artery (ICA), runs along the olfactory tract, and makes a hairpin bend to supply the territory of the distal ACA. PPOA is also associated with cerebral aneurysms. An accessory MCA is a variant of the middle cerebral artery (MCA) that arises from either the proximal or distal portion of the A1 segment of the ACA, which runs parallel to the course of the MCA and supplies some of the MCA territory. We experienced a rare case of coexistence of PPOA with an unruptured aneurysm and accessory MCA. Three-dimensional computed tomographic angiography (3D-CTA) has an excellent picture of the spatial relationship of the surrounding bony and vascular structure.

To explore a new approach mainly based on deep learning residual network (ResNet) to detect infarct cores on non-contrast CT images and improve the accuracy of acute ischemic stroke diagnosis.

We continuously enrolled magnetic resonance diffusion weighted image (MR-DWI) confirmed first-episode ischemic stroke patients (onset time less than 9h) as well as some normal individuals in this study. They all underwent CT plain scan and MR-DWI scan with same scanning range, layer thickness (4mm) and interlayer spacing (4mm) (The time interval between two examinations less than 4h). Setting MR-DWI as gold standard of infarct core and using deep learning ResNet combined with a maximum a posteriori probability (MAP) model and a post-processing method to detect the infarct core on non-contrast CT images. After that, we use decision curve analysis (DCA) establishing models to analyze the value of this new method in clinical practice.

116 ischemic stroke patients and 26 normal people were enrolled. 58 patients were allocated into training dataset and 58 were divided into testing dataset along with 26 normal samples. The identification accuracy of our ResNet based approach in detecting the infarct core on non-contrast CT is 75.9%. The DCA shows that this deep learning method is capable ofimprovingthe net benefit of ischemic stroke patients.

Our deep learning residual network assisted with optimization methods is able to detect early infarct core on non-contrast CT images and has the potential to help physicians improve diagnostic accuracy in acute ischemic stroke patients.

Our deep learning residual network assisted with optimization methods is able to detect early infarct core on non-contrast CT images and has the potential to help physicians improve diagnostic accuracy in acute ischemic stroke patients.Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.Thrombosis is one of the main causes of failure in device implantation. Computational thrombosis simulation is a convenient approach to evaluate the risk of thrombosis for a device. However, thrombosis is a complicated process involving multiple species and reactions. Application of a macroscopic, single-scale computational model for device-induced thrombosis is a cost-effective approach. The current study has refined an existing thrombosis model, which simulated thrombosis by tracing four species in blood non-activated platelets, activated platelets, surface adherent platelets, and ADP. Platelets are activated mechanically by shear stress, and chemically by ADP. Platelet adhesion occurs on surfaces with low wall shear stress with platelet aggregation inhibited in regions of high shear stress. The study improves the existing thrombosis model by 1) Modifying the chemical platelet activation function so that ADP activates platelets; 2) Modifying the function describing thrombus deposition and growth to distinguish between thrombus deposition on wall surfaces and thrombus growth on existing thrombus surfaces; 3) Modifying the thrombus breakdown function to allow for thrombus breakdown by shear stress; 4) Modeling blood flow as non-Newtonian. The results show that the inclusion of ADP and the use of a non-Newtonian model improve agreement with experimental data.Previous studies investigating white matter organization in attention deficit hyperactivity disorder (ADHD) have adopted diffusion tensor imaging (DTI). However, attempts to derive pathophysiological models from this research have had limited success, possibly reflecting limitations of the DTI method. This study investigated the organization of white matter tracts in ADHD using fixel based analysis (FBA), a fiber specific analysis framework that is well placed to provide novel insights into the pathophysiology of ADHD. High angular diffusion weighted imaging and clinical data were collected in a large paediatric cohort (N = 144; 76 with ADHD; age range 9-11 years). White matter tractography and FBA were performed across 14 white matter tracts. Permutation based inference testing (using FBA derived measures of fiber density and morphology) assessed differences in white matter tract profiles between children with and without ADHD. Analysis further examined the association between white matter properties and ADHD symptom severity. Relative to controls, children with ADHD showed reduced white matter connectivity along association and projection pathways considered critical to behavioral control and motor function. Increased ADHD symptom severity was associated with reduced white matter organization in fronto-pontine fibers projecting to and from the supplementary motor area. Providing novel insight into the neurobiological foundations of ADHD, this is the first research to uncover fiber specific white matter alterations across a comprehensive set of white matter tracts in ADHD using FBA. Findings inform pathophysiological models of ADHD and hold great promise for the consistent identification and systematic replication of brain differences in this disorder.The brain of deaf people is definitely not just deaf, and we have to reconsider what we know about the impact of hearing loss on brain development in light of comorbid vestibular impairments.Organizing matter at the atomic scale is a central goal of nanotechnology. Bottom-up approaches, in which molecular building blocks are programmed to assemble via supramolecular interactions, are a proven and versatile route to new and useful nanomaterials. Although a wide variety of molecules have been used as building blocks, proteins have several intrinsic features that present unique opportunities for designing nanomaterials with sophisticated functions. There has been tremendous recent progress in designing proteins to fold and assemble to highly ordered structures. Here we review the leading approaches to the design of closed polyhedral protein assemblies, highlight the importance of considering the assembly process itself, and discuss various applications and future directions for the field. We emphasize throughout the exciting opportunities presented by recent advances as well as challenges that remain.YY1-associated factor 2 (YAF2) was frequently reported to modulate target gene transcription through both epigenetic and non-epigenetic means. However, other mechanisms were also utilized by YAF2 to carry out its biological functions. Here, we demonstrated that YAF2 from human tumor and non-tumor cells were mainly expressed as Serine 167 phosphorylated form. Further studies showed that the phosphorylated YAF2 up-regulated while its knockdown by specific siRNAs reduced fibronectin type III and ankyrin repeat domains 1 (FANK1) protein level. Mechanistic exploration disclosed that phosphorylated YAF2 inhibit proteasomal degradation of polyubiquitinated FANK1, leading to its increased stability. We then validated their interaction, and displayed that the FN3 domain of FANK1 binds to amino-terminal of YAF2. Functional studies showed that phosphorylated YAF2 inhibits tumor cell apoptosis in a FANK1-dependent manner. Taken together, our current findings demonstrated that phosphorylated YAF2 exhibits anti-apoptotic activity through targeting FANK1 expression in human tumor cells.Under natural conditions, plants are exposed to solar ultraviolet (UV) radiation, which damages chromosomal DNA. Although plant responses to UV-induced DNA damage have recently been elucidated in detail, revealing a set of DNA repair mechanisms and translesion synthesis (TLS), limited information is currently available on UV-induced mutations in plants. We previously reported the development of a supF-based system for the detection of a broad spectrum of mutations in the chromosomal DNA of Arabidopsis. In the present study, we used this system to investigate UV-induced mutations in plants. The irradiation of supF-transgenic plants with UV-C (500 and 1000 J/m2) significantly increased mutation frequencies (26- and 45-fold, respectively). GC to AT transitions (43-67% of base substitutions) dominated in the mutation spectrum and were distributed throughout single, tandem, and multiple base substitutions. Most of these mutations became undetectable with the subsequent illumination of UV-irradiated plants with white light for photoreactivation (PR). These results indicated that not only GC to AT single base substitutions, but also tandem and multiple base substitutions were caused by two major UV-induced photoproducts, cyclobutane-type pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs). In contrast, a high proportion of AT to TA transversions (56% of base substitutions) was a characteristic feature of the mutation spectrum obtained from photoreactivated plants. These results define the presence of the characteristic feature of UV-induced mutations, and provide insights into DNA repair mechanisms in plants.Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.It has been implied that deregulation of cyclin D1 turnover under stresses can facilitate genomic instability and trigger tumorigenesis. Much focus has been placed on identifying the E3 ligases responsible for mediating cyclin D1 degradation. However, the findings were quite controversial and cell type-dependent. Little is known about how cyclin D1 is regulated in precancerous cells upon DNA damage and which E3 ligases mediate the effects. Here we found cyclin D1 reduction is an early response to DNA damage in immortalized esophageal epithelial cells, with expression dropping to a low level within 1 h after γ-irradiation. Comparison of temporal expression of cyclin D1 upon DNA damage between immortalized NE083-hTERT and NE083-E6E7, the latter being p53/p21-defective, showed that DNA damage-induced rapid cyclin D1 reduction was p53-independent and occurred before p21 accumulation. Overexpression of cyclin D1 in NE083-E6E7 cells could attenuate G0/G1 cell cycle arrest at 1 h after irradiation. Furthermore, rapid reduction of cyclin D1 upon DNA damage was attributed to proteasomal degradation, as evidenced by data showing that proteasomal inhibition by MG132 blocked cyclin D1 reduction while cycloheximide facilitated it. Inhibition of ATM activation and knockdown of E3 ligase adaptor FBX4 reversed cyclin D1 turnover in immortalized NE083-hTERT cells. Further study showed that knockdown of FBX4 facilitated DNA breaks, as indicated by an increase in γ-H2AX foci in esophageal cancer cells. Taken together, the results substantiated a pivotal role of ATM and FBX4 in cyclin D1 proteolysis upon DNA damage in precancerous esophageal epithelial cells, implying that deregulation of the process may contribute to carcinogenesis of esophageal squamous cell carcinoma.The chemotaxis of Dictysotelium discoideum cells in response to a chemical gradient of cyclic adenosine 3',5'-monophosphate (cAMP) was studied using a newly designed microfluidic device. The device consists of 800 cell-sized channels in parallel, each 4 μm wide, 5 μm high, and 100 μm long, allowing us to prepare the same chemical gradient in all channels and observe the motility of 500-1000 individual cells simultaneously. The percentage of cells that exhibited directed migration was determined for various cAMP concentrations ranging from 0.1 pM to 10 μM. The results show that chemotaxis was highest at 100 nM cAMP, consistent with previous observations. At concentrations as low as 10 pM, about 16% of cells still exhibited chemotaxis, suggesting that the receptor occupancy of only 6 cAMP molecules/cell can induce chemotaxis in very sensitive cells. At 100 pM cAMP, chemotaxis was suppressed due to the self-production and secretion of intracellular cAMP induced by extracellular cAMP. Overall, systematic observations of a large number of individual cells under the same chemical gradients revealed the heterogeneity of chemotaxis responses in a genetically homogeneous cell population, especially the existence of a sub-population with extremely high sensitivity for chemotaxis.Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been implicated in the ferroptosis in cancer cells and hematopoiesis in the bone marrow. However, the role of iron metabolism, especially NCOA4-mediated degradation of ferritin, has not been explored in the proliferation of mesenchymal stem cells. The present study was designed to explore the role of NCOA4-mediated ferritinophagy in hypoxia-treated dental pulp stem cells (DPSCs). Hypoxia treatment increased ROS generation, boosted cytosolic labile iron pool, increased expression of transferrin receptor 1 and NCOA4. Moreover, colocalization of LC3B with NCOA4 and ferritin was observed in hypoxia-treated DPSCs, indicating the development of ferritinophagy. Hypoxia promoted the proliferation of DPSCs, but not ferroptosis, under normal serum supplement and serum deprivation. NCOA4 knock-down reduced ferritin degradation and inhibited proliferation of DPSCs under hypoxia. Furthermore, the activation of hypoxia inducible factor 1α and p38 mitogen-activated protein kinase signaling pathway was involved in the upregulation of NCOA4 in hypoxia. Therefore, our present study suggested that NCOA4-mediated ferritinophagy promoted the level of labile iron pool, leading to enhanced iron availability and elevated cell proliferation of DPSCs. Our present study uncovered a physiological role of ferritinophagy in the proliferation and growth of mesenchymal stem cells under hypoxia.The miR-15a/16 gene cluster is located in human chromosome 13 (13q14.3) and mouse chromosome 14 (14qC3). These genes are involved in cancer development and immune regulation. Our group has previously verified the binding of the 3'-untranslated region of NKG2D gene by miR-16 through dual-luciferase reporter assay. Herein, we found that miR-16 overexpression inhibited the NKG2D expression of CD8+ T cells, and that CD8+ NKG2D+ T cell frequency increased in miR-15/16-/- mice. CD8+ NKG2D+ T cells derived of miR-15/16-/- mice displayed activatory phenotype with enhanced IFN-γ production and cytotoxicity. The transfection of lentivirus containing antago-miR-16 sequences enhanced the NKG2D expression level of CD8+ T cells. However, no significant differences in CD8+ NKG2D+ T cell frequencies existed between wild-type and miR-15/16-transgenic mice because NKG2D was not expressed on the rest CD8+ T cells. When CD8+ T cells of miR-15/16-transgenic mice were treated with IL-2 in vitro, the magnitude of NKG2D expression and activation of CD8+ T cells was lower than that of wild-type mice. miR-15/16-/- mice showed that the exacerbation of colitis induced by dextran sulfate sodium (DSS) with more CD8+ T cells accumulated in inflamed colons, whereas miR-15/16-transgenic mice ameliorated DSS-induced colitis with less infiltration of CD8+ T cells. When NKG2D+ cells were depleted with NKG2D antibody in miR-15/16-/- mice, the aggravated colitis disappeared. All these results demonstrated that NKG2D could be upregulated by decreased miR-16 in CD8+ T cells to mediate inflammation. Thus, gene therapy based on the overexpression of miR-16 in CD8+ T cells can be used for patients with inflammatory diseases.

Poststroke depression (PSD) is an important consequence after stroke, with a negative impact on stroke outcome. Recent evidence points to a modulatory role of Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in depression. Herein, we evaluated the antidepressant efficacy and mechanism underlying the potent therapeutic effects of Gadd45b after cerebral ischemia.

Adult male Sprague-Dawley rats were subjected to cerebral ischemia by permanent middle cerebral artery occlusion (MCAO). The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were performed after completing MCAO to study the antidepressant-like effects. The expression of brain-derived neurotrophic factor (BDNF) and neuroinflammation were determined in the hippocampus.

We showed that Gadd45b knockdown induced depression-like behaviors after cerebral ischemia, including increased immobility time in the FST and TST and reduced sucrose preference. Gadd45b knockdown enhanced the expression of pro-inflammatory cytokines IL-6 and TNF-α, accompanying with decreased protein levels of BDNF in the hippocampus. Moreover, the levels of phosphorylated ERK and CREB, which have been implicated in events downstream of BDNF signaling, were also decreased after cerebral ischemia.

Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.

Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.

Variants in KCNQ2 and KCNQ3 may cause benign neonatal familial seizures and early infantile epileptic encephalopathy. Previous reports suggest that in silico models cannot predict pathogenicity accurately enough for clinical use. Here we sought to establish a model to accurately predict the pathogenicity of KCNQ2 and KCNQ3 missense variants based on available in silico prediction models.

ClinVar and gnomAD databases of reported KCNQ2 and KCNQ3 missense variants in patients with neonatal epilepsy were accessed and classified as benign, pathogenic, or of uncertain significance. Sensitivity, specificity, and classification accuracy for prediction of pathogenicity were determined and compared for 10 widely used prediction algorithms program. A mathematical model of the variants (KCNQ Index) was created using their amino acid location and prediction algorithm scores to improve prediction accuracy.

Using clinically characterized variants, the free online tool PROVEAN accurately predicted pathogenicity 92% of the time and the KCNQ Index had an accuracy of 96%. However, when including the gnomAD database as benign variants, only the KCNQ Index was able to predict pathogenicity with an accuracy greater than 90% (sensitivity=93% and specificity=98%). No model could accurately predict the phenotype of variants.

We show that KCNQ channel variant pathogenicity can be predicted by a novel KCNQ Index in neonatal epilepsy. However, more work is needed to accurately predict the patient's epilepsy phenotype from in silico algorithms.

We show that KCNQ channel variant pathogenicity can be predicted by a novel KCNQ Index in neonatal epilepsy. However, more work is needed to accurately predict the patient's epilepsy phenotype from in silico algorithms.The present work reports on the preparation of polythiol-functionalized silica particles by thermally and photo-initiated radical addition reactions using poly(3-mercaptopropyl)methylsiloxane (PMPMS) as sulfhydryl group-rich surface modification reagent. Prior to surface modification with PMPMS, the silica was vinylized with vinyl trimethoxysilane. Finally, the usefulness of the thiolated silica particles was demonstrated by their further modification for various HPLC applications such as argentation chromatography and chiral separations. Aiming at a sulfhydryl group-rich, thin PMPMS layer on the surface of the silica several factors such as quantity of PMPMS, radical starter and reaction time were investigated by a design of experiment (DoE) approach. In thermally induced polymerization reactions 2,2'-azobis(isobutyronitrile) (AIBN) was used as radical starter, in photo-induced reactions 2,2-dimethoxy-2-phenylacetophenone (DMPA) was used instead. The incorporation of PMPMS was evaluated by elemental analysisbased on commercially available CHIRALPAK QN-AX silica particles (120 Å, 5 µm).Fentanyl analogues used in therapy and a range of highly potent non-pharmaceutical fentanyl derivatives are subject to international control, as the latter are increasingly being synthesized illicitly and sold as 'synthetic heroin', or mixed with heroin. A significant number of hospitalizations and deaths have been reported in the EU and USA following the use of illicitly synthesized fentanyl derivatives. It has been unequivocally demonstrated that the enantiomers of fentanyl derivatives exhibit different pharmaco-toxicological profiles, which makes crucial to avail of suitable analytical methods enabling investigations at a "stereochemical level". Chromatographic methods useful to discriminate the enantioseparation of fentanyls and their derivatives are still missing in the literature. This is the first study in which the enantioseparation of four fentanyl derivatives, that is, (±)-trans-3-methyl norfentanyl, (±)-cis-3-methyl norfentanyl, β-hydroxyfentanyl, and β-hydroxythiofentanyl, has been obtained under polar-ionic conditions. Indeed, the use of ACN-based mobile phases with minor amounts of either 2-propanol or ethanol (plus diethylamine and formic acid as ionic additives) allowed obtaining enantioseparation and enantioresolution factors up to 1.83 and 7.02, respectively. For the study, the two chiral stationary phases cellulose tris(3-chloro-4-methylphenylcarbamate) and cellulose tris(4-chloro-3-methylphenylcarbamate) were used, displaying a remarkably different performance towards the enantioseparation of (±)-cis-3-methyl norfentanyl. Chiral LC analyses with a high-resolution mass spectrometry detector were also carried out in order to confirm the obtained data and demonstrate the suitability and compatibility of the optimized mobile phases with mass spectrometric systems.After parturition, bovine uterine stromal cells are often exposed to complex bacterial and viral stimuli owing to epithelial cell rupture, resulting in an inflammatory response. In this study, we used an in vitro model to study the response of bovine endometrial stromal cells to inflammatory mediators and the associated regulated microRNAs in response to lipopolysaccharide. Lipopolysaccharide (LPS) is a bacterial wall component in gram-negative bacteria that causes inflammation upon immune recognition, which is used to create in vitro inflammation models. Thus, we used high-throughput RNA sequencing to identify miRNAs that may have an anti-inflammatory role in the LPS-induced inflammatory response. Two groups of bovine uterine cells were treated with phosphate buffer saline (PBS) and LPS, respectively. Compared with the control (PBS) group, the LPS-treated group had 219 differentially expressed miRNAs, of which 113 were upregulated, and 106 were downregulated. Gene ontology enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in several activities, such as transferase activity, small molecule binding, and protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the target genes of differential miRNAs were significantly enriched in fluid shear stress and atherosclerosis, MAPK signaling pathway, TNF signaling pathway. By analyzing differentially expressed miRNAs, we found that miR-200c, miR-1247-3p, and let-7b are directly related to the inflammatory response. For instance, miR-200c target genes (MAP3K1, MAP4K3, MAPKAPK5, MAP3K8, MAP3K5) and let-7b target genes (CASP3, IL13, MAPK8, CXCL10) were significantly enriched in the MAPK and IL-17 signaling pathways, respectively. In summary, our research provides insight into the molecular mechanism underlying LPS-induced inflammation in vitro, which may unveil new targets for the treatment of endometritis.RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision.SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.Predators use vision to hunt, and hunting success is one of evolution's main selection pressures. However, how viewing strategies and visual systems are adapted to predation is unclear. Tracking predator-prey interactions of mice and crickets in 3D, we find that mice trace crickets with their binocular visual fields and that monocular mice are poor hunters. Mammalian binocular vision requires ipsi- and contralateral projections of retinal ganglion cells (RGCs) to the brain. Large-scale single-cell recordings and morphological reconstructions reveal that only a small subset (9 of 40+) of RGC types in the ventrotemporal mouse retina innervate ipsilateral brain areas (ipsi-RGCs). Selective ablation of ipsi-RGCs ( less then 2% of RGCs) in the adult retina drastically reduces the hunting success of mice. Stimuli based on ethological observations indicate that five ipsi-RGC types reliably signal prey. Thus, viewing strategies align with a spatially restricted and cell-type-specific set of ipsi-RGCs that supports binocular vision to guide predation.The retinal pigment epithelium (RPE)-choriocapillaris (CC) complex in the eye is compromised in age-related macular degeneration (AMD) and related macular dystrophies (MDs), yet in vitro models of RPE-CC complex that enable investigation of AMD/MD pathophysiology are lacking. By incorporating iPSC-derived cells into a hydrogel-based extracellular matrix, we developed a 3D RPE-CC model that recapitulates key features of both healthy and AMD/MD eyes and provides modular control over RPE and CC layers. Using this 3D RPE-CC model, we demonstrated that both RPE- and mesenchyme-secreted factors are necessary for the formation of fenestrated CC-like vasculature. Our data show that choroidal neovascularization (CNV) and CC atrophy occur in the absence of endothelial cell dysfunction and are not necessarily secondary to drusen deposits underneath RPE cells, and CC atrophy and/or CNV can be initiated systemically by patient serum or locally by mutant RPE-secreted factors. Finally, we identify FGF2 and matrix metalloproteinases as potential therapeutic targets for AMD/MDs.Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.Heat shock instantly reprograms transcription. Whether gene and enhancer transcription fully recover from stress and whether stress establishes a memory by provoking transcription regulation that persists through mitosis remained unknown. Here, we measured nascent transcription and chromatin accessibility in unconditioned cells and in the daughters of stress-exposed cells. Tracking transcription genome-wide at nucleotide-resolution revealed that cells precisely restored RNA polymerase II (Pol II) distribution at gene bodies and enhancers upon recovery from stress. However, a single heat exposure in embryonic fibroblasts primed a faster gene induction in their daughter cells by increasing promoter-proximal Pol II pausing and by accelerating the pause release. In K562 erythroleukemia cells, repeated stress refined basal and heat-induced transcription over mitotic division and decelerated termination-coupled pre-mRNA processing. The slower termination retained transcripts on the chromatin and reduced recycling of Pol II.

Autoři článku: Russoalbrektsen4431 (Currin Clements)