Russellbateman3845

Z Iurium Wiki

Granular mixtures with size difference can segregate upon shaking or shear. However, the quantitative study of this process remains difficult because it can be influenced by many mechanisms. Conflicting results on similar experimental systems are frequently obtained when the experimental conditions are not well controlled, which is mainly due to the fact that many mechanisms can be at work simultaneously. Moreover, it is often that macroscopic or empirical measures, which lack microscopic physical bases, are used to explain the experimental findings and therefore cannot provide an accurate and complete depiction of the overall process. Here, we carry out a detailed and systematic microscopic structure and dynamics study of a cyclically sheared granular system with rigorously controlled experimental conditions. We find that both convection and arching effect play important roles in the segregation process in our system, and we can quantitatively identify their respective contributions.Luminescent centers in the two-dimensional material hexagonal boron nitride have the potential to enable quantum applications at room temperature. To be used for applications, it is crucial to generate these centers in a controlled manner and to identify their microscopic nature. Here, we present a method inspired by irradiation engineering with oxygen atoms. We systematically explore the influence of the kinetic energy and the irradiation fluence on the generation of luminescent centers. We find modifications of their density for both parameters, while a fivefold enhancement is observed with increasing fluence. Molecular dynamics simulations clarify the generation mechanism of these centers and their microscopic nature. We infer that VNCB and [Formula see text] are the most likely centers formed. Ab initio calculations of their optical properties show excellent agreement with our experiments. Our methodology generates quantum emitters in a controlled manner and provides insights into their microscopic nature.Administrative records are increasingly used to identify registered voters who may have moved, with potential movers then sent postcards asking them to confirm their address of registration. It is important to understand how often these registrants did not move, and how often such an error is not corrected by the postcard confirmation process, because uncorrected errors make it more difficult for a registrant to subsequently vote. While federal privacy protections generally prevent researchers from observing the data necessary to estimate these quantities, we are able to study this process in Wisconsin because special poll books, available via public records requests, listed those registrants who were identified as potential movers and did not respond to a subsequent postcard. At least 4% of these registrants cast a ballot at their address of registration, with minority registrants twice as likely as white registrants to do so.An R loop is a unique triple-stranded structure that participates in multiple key biological processes and is relevant to human diseases. Accurate and comprehensive R loop profiling is a prerequisite for R loops studies. However, current R loop mapping methods generate large discrepancies, therefore an independent method is in urgent need. Here, we establish an independent R loop CUT&Tag (Tn5-based cleavage under targets and tagmentation) method by combining CUT&Tag and GST-His6-2×HBD (glutathione S-transferase-hexahistidine-2× hybrid-binding domain), an artificial DNA-RNA hybrid sensor that specifically recognizes the DNA-RNA hybrids. We demonstrate that the R loop CUT&Tag is sensitive, reproducible, and convenient for native R loop mapping with high resolution, and find that the capture strategies, instead of the specificity of sensors, largely contribute to the disparities among different methods. Together, we provide an independent strategy for genomic profiling of native R loops and help resolve discrepancies among multiple R loop mapping methods.Sleep disruptions are among the most commonly reported symptoms across neurodevelopmental disorders (NDDs), but mechanisms linking brain development to normal sleep are largely unknown. From a Drosophila screen of human NDD-associated risk genes, we identified the chromatin remodeler Imitation SWItch/SNF (ISWI) to be required for adult fly sleep. Loss of ISWI also results in disrupted circadian rhythms, memory, and social behavior, but ISWI acts in different cells and during distinct developmental times to affect each of these adult behaviors. Specifically, ISWI expression in type I neuroblasts is required for both adult sleep and formation of a learning-associated brain region. Expression in flies of the human ISWI homologs SMARCA1 and SMARCA5 differentially rescues adult phenotypes, while de novo SMARCA5 patient variants fail to rescue sleep. We propose that sleep deficits are a primary phenotype of early developmental origin in NDDs and point toward chromatin remodeling machinery as critical for sleep circuit formation.Crown-like structures (CLSs) are adipose microenvironments of macrophages engulfing adipocytes. Their histological density in visceral adipose tissue (VAT) predicts metabolic disorder progression in obesity and is believed to initiate obesity comorbidities. Here, we use three-dimensional (3D) light sheet microscopy and deep learning to quantify 3D features of VAT CLSs in lean and obese states. Obese CLS densities are significantly higher, composing 3.9% of tissue volume compared with 0.46% in lean tissue. Across the states, individual CLS structural characteristics span similar ranges; however, subpopulations are distinguishable. Obese VAT contains large CLSs absent from lean tissues, located near the tissue center, while lean CLSs have higher volumetric cell densities and prolate shapes. These features are consistent with inefficient adipocyte elimination in obesity that contributes to chronic inflammation, representing histological biomarkers to assess adipose pathogenesis. This tissue processing, imaging, and analysis pipeline can be applied to quantitatively classify 3D microenvironments across diverse tissues.Living tissues embody a unique class of hybrid materials in which active and thermal forces are inextricably linked. Mechanical characterization of tissues demands descriptors that respect this hybrid nature. In this work, we develop a microrheology-based force spectrum analysis (FSA) technique to dissect the active and passive fluctuations of the extracellular matrix (ECM) in three-dimensional (3D) cell culture models. In two different stromal models and a 3D breast cancer spheroid model, our FSA reveals emergent hybrid dynamics that involve both high-frequency stress stiffening and low-frequency fluidization of the ECM. We show that this is a general consequence of nonlinear coupling between active forces and the frequency-dependent viscoelasticity of stress-stiffening networks. In 3D breast cancer spheroids, this dual active stiffening and fluidization is tightly connected with invasion. Our results suggest a mechanism whereby breast cancer cells reconcile the seemingly contradictory requirements for both tension and malleability in the ECM during invasion.Wnt/β-catenin signaling requires inhibition of a multiprotein destruction complex that targets β-catenin for proteasomal degradation. SOX9 is a potent antagonist of the Wnt pathway and has been proposed to act through direct binding to β-catenin or the β-catenin destruction complex. Here, we demonstrate that SOX9 promotes turnover of β-catenin in mammalian cell culture, but this occurs independently of the destruction complex and the proteasome. This activity requires SOX9's ability to activate transcription. Transcriptome analysis revealed that SOX9 induces the expression of the Notch coactivator Mastermind-like transcriptional activator 2 (MAML2), which is required for SOX9-dependent Wnt/β-catenin antagonism. MAML2 promotes β-catenin turnover independently of Notch signaling, and MAML2 appears to associate directly with β-catenin in an in vitro binding assay. This work defines a previously unidentified pathway that promotes β-catenin degradation, acting in parallel to established mechanisms. SOX9 uses this pathway to restrict Wnt/β-catenin signaling.The invention of the maser stimulated revolutionary technologies such as lasers and atomic clocks. Yet, realizations of masers are still limited; in particular, the physics of masers remains unexplored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic phenomena such as time crystals. Here, we investigate the Floquet system of periodically driven 129Xe gas under damping feedback and unexpectedly observe a multimode maser that oscillates at frequencies of transitions between Floquet states. Our findings extend maser techniques to Floquet systems and open avenues to probe Floquet phenomena unaffected by decoherence, enabling a previously unexplored class of maser sensors. As a first application, our maser offers the capability of measuring low-frequency (1 to 100 mHz) magnetic fields with subpicotesla-level sensitivity, which is substantially better than state-of-the-art magnetometers and can be applied to, for example, ultralight dark matter searches.Mass production of zigzag and near-zigzag single-wall carbon nanotubes (SWCNTs), whether by growth or separation, remains a challenge, which hinders the disclosure of their previously unknown property and practical applications. Here, we report a method to separate SWCNTs by chiral angle through temperature control of a binary surfactant system of sodium cholate (SC) and SDS in gel chromatography. Eleven types of single-chirality SWCNT species with chiral angle less than 20° were efficiently separated including multiple zigzag and near-zigzag species. Among them, (7, 3), (8, 3), (8, 4), (9, 1), (9, 2), (10, 2), and (11, 1), were produced on the submilligram scale. The spectral detection results indicate that lowering the temperature induced selective adsorption and reorganization of the SC/SDS cosurfactants on SWCNTs with different chiral angles, amplifying their interaction difference with gel. We believe that this work is an important step toward industrial separation of single-chirality zigzag and near-zigzag SWCNTs.Translation is a crucial process in cancer development and progression. Many oncogenic signaling pathways target the translation initiation stage to satisfy the increased anabolic demands of cancer cells. Using quantitative profiling of initiating ribosomes, we found that ribosomal pausing at the start codon serves as a "brake" to restrain the translational output. In response to oncogenic RAS signaling, the initiation pausing relaxes and contributes to the increased translational flux. Intriguingly, messenger RNA (mRNA) m6A modification in the vicinity of start codons influences the behavior of initiating ribosomes. Under oncogenic RAS signaling, the reduced mRNA methylation leads to relaxed initiation pausing, thereby promoting malignant transformation and tumor growth. Restored initiation pausing by inhibiting m6A demethylases suppresses RAS-mediated oncogenic translation and subsequent tumorigenesis. Our findings unveil a paradigm of translational control that is co-opted by RAS mutant cancer cells to drive malignant phenotypes.

Autoři článku: Russellbateman3845 (Pratt Tierney)