Rowelambertsen6405

Z Iurium Wiki

Recent advances have enabled us to understand the genetics of steatotic and nonsteatotic hepatocellular adenomas, a plethora of morphologic-molecular subtypes of hepatic malignancies, a variety of clear cell and non-clear cell renal cell carcinomas, a myriad of hereditary and sporadic exocrine and neuroendocrine tumors of the pancreas, and the development of targeted therapeutic agents for gastrointestinal stromal tumors based on characteristic KIT gene mutations. Mutations associated with aggressive phenotypes of these malignancies can sometimes be predicted on the basis of their imaging characteristics. Radiologists should be familiar with the genetics and pathogenesis of common cancers that have associated imaging biomarkers, which can help them be integral members of the cancer management team and guide clinicians and pathologists. Online supplemental material is available for this article.©RSNA, 2020 See discussion on this article by Luna (pp 1627-1630).The radiology report represents the sum of a radiologist's highest level of synthesis and insight into a patient's condition. It is the most important product that radiologists generate to help direct patient care. Despite the self-evident importance of clear and effective radiology reporting, radiologists usually receive little or no formal reporting education during training. Instead, it is learned in a piecemeal and often indirect fashion through occasional correction and imitating the reports of other radiologists. The audience of the radiology report extends far beyond the ordering provider and includes patients and their families, medical support staff, subspecialty providers, other radiologists, and research interests. Creating a report that fulfills the needs of this diverse group is a formidable if not quixotic ambition. However, there are certain key principles to reporting the imaging findings, impression, and recommendations that serve as a guide and promote careful consideration about how reports are understood. The findings section should emphasize short, informative, and factual observations while avoiding inappropriate interpretation, excessive use of terms of perception, and redundancy. The impression is the thoughtful synthesis of the meaning of the findings leading to a diagnosis, a differential diagnosis, and management recommendations. Creating a clear and impactful impression allows radiologists to provide the highest level of clinical care and direction but takes time and effort beyond simply restating the findings. The impression should use language that is understandable, memorable, and actionable. Reporting skills require ongoing attention and must adapt to the evolving practice patterns and communication styles in medicine. ©RSNA, 2020.Theranostics refers to the pairing of diagnostic biomarkers with therapeutic agents that share a specific target in diseased cells or tissues. Nuclear medicine, particularly with regard to applications in oncology, is currently one of the greatest components of the theranostic concept in clinical and research scenarios. Theranostics in nuclear medicine, or nuclear theranostics, refers to the use of radioactive compounds to image biologic phenomena by means of expression of specific disease targets such as cell surface receptors or membrane transporters, and then to use specifically designed agents to deliver ionizing radiation to the tissues that express these targets. The nuclear theranostic approach has sparked increasing interest and gained importance in parallel to the growth in molecular imaging and personalized medicine, helping to provide customized management for various diseases; improving patient selection, prediction of response and toxicity, and determination of prognosis; and avoiding futile and costly diagnostic examinations and treatment of many diseases. The authors provide an overview of theranostic approaches in nuclear medicine, starting with a review of the main concepts and unique features of nuclear theranostics and aided by a retrospective discussion of the progress of theranostic agents since early applications, with illustrative cases emphasizing the imaging features. Advanced concepts regarding the role of fluorine 18-fluorodeoxyglucose PET in theranostics, as well as developments in and future directions of theranostics, are discussed. ©RSNA, 2020 See discussion on this article by Greenspan and Jadvar.Chylothorax is a rare cause of pleural effusion, secondary to accumulation of lymph in the pleural space. Diagnosis is based on the triglyceride and cholesterol content of pleural fluid obtained with thoracentesis. Because the lymphatic system plays an essential role in fat absorption and immune response, lymphatic leak associated with chylothorax may cause life-threatening malnutrition and immunodeficiency. Chylothorax is usually described as traumatic or nontraumatic. The main cause of chylothorax is traumatic, typically postsurgical, secondary to iatrogenic direct puncture of the thoracic duct during thoracic surgery. Causes of nontraumatic chylothorax include a wide range of differential diagnoses. Lymphoma and thoracic malignancies are the most common causes and are responsible for chylothorax by extrinsic compression or invasion of the thoracic duct. Other rare causes include primary and secondary diffuse lymphatic diseases, responsible for chylothorax by lymphatic vessel wall dysfunction. Imaging the lymphatic system remains a challenge in the days of modern imaging. Nonenhanced MR lymphography is a noninvasive technique based on heavily T2-weighted sequences, thus enabling visualization of the lymphatic circulation. CA-074 Me clinical trial This technique allows diagnosis and differential diagnosis, evaluation of disease severity, and guidance of therapeutic management in nontraumatic chylothorax. Furthermore, it may offer radiologic classification of primary lymphatic diseases on the basis of morphologic features of lymphatic vessels. The authors describe the anatomy and physiology of the thoracic lymphatic system, present the technique of nonenhanced MR lymphography, and discuss pathophysiologic mechanisms and imaging features in different causes of nontraumatic chylothorax. ©RSNA, 2020.The brachial plexus is an intricate anatomic structure with an important function providing innervation to the upper extremity, shoulder, and upper chest. Owing to its complex form and longitudinal course, the brachial plexus can be challenging to conceptualize in three dimensions, which complicates evaluations in standard orthogonal imaging planes. The components of the brachial plexus can be determined by using key anatomic landmarks. Applying this anatomic knowledge, a radiologist should then be able to identify pathologic appearances of the brachial plexus by using imaging modalities such as MRI, CT, and US. Brachial plexopathies can be divided into two broad categories that are based on disease origin traumatic and nontraumatic. In the traumatic plexopathy group, there are distinct imaging findings and management methods for pre- versus postganglionic injuries. For nontraumatic plexopathies, having access to an accurate patient history is often crucial. Knowledge of the timing of radiation therapy is critical to diagnosing post-radiation therapy brachial plexopathy. In acute brachial neuritis, antecedent stressors occur within a specific time frame. Primary and secondary tumors of the brachial plexus are not uncommon, with the most common primary tumors being peripheral nerve sheath tumors. Direct extension and metastasis from primary malignancies such as breast and lung cancer can occur. Although diagnosing a brachial plexus anomaly is potentially perplexing, it can be straightforward if it is based on foundational knowledge of anatomy, imaging findings, and pathologic features. ©RSNA, 2020.An earlier incorrect version of this article appeared in print. The online version is correct.Transcatheter mitral valve replacement (TMVR) is a catheter-based interventional technique for treating mitral valve disease in patients who are at high risk for open mitral valve surgery and with unfavorable anatomy for minimally invasive edge-to-edge transcatheter mitral valve repair. There are several TMVR devices with different anchoring mechanisms, delivered by either transapical or transseptal approaches. Transthoracic echocardiography is the first-line imaging modality used for characterization and quantification of mitral valve disorders. CT is complementary to echocardiography and has several advantages, including high isotropic spatial resolution, good temporal resolution, large field of view, multiplanar reconstruction capabilities, and rapid turnaround time. CT is essential for multiple aspects of preprocedural planning. Accurate and reproducible techniques to prescribe the mitral annulus at CT have been described from which important measurements such as the area, perimeter, trigone-trigone distance, intercommissural distance, and septolateral distance are obtained. The neo-left ventricular outflow tract (LVOT) can be simulated by placing a virtual prosthesis in the CT data to predict the risk of TMVR-induced LVOT obstruction. The anatomy of the landing zone and subvalvular apparatus as well as the relationship of the virtual device to adjacent structures such as the coronary sinus and left circumflex coronary artery can be evaluated. CT also stimulates procedural fluoroscopic angles. CT can be used to evaluate the chest wall for transapical access and the atrial septum for transseptal access. Follow-up CT is useful in identifying complications such as LVOT obstruction, paravalvular leak, pseudoaneurysm, and valve embolization. Online supplemental material is available for this article.©RSNA, 2020.Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. The infection has been reported in most countries around the world. As of August 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19-associated deaths. It has become apparent that although COVID-19 predominantly affects the respiratory system, many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease, as well as its related complications, and proper utilization and interpretation of imaging examinations is crucial. With the growing global COVID-19 outbreak, a comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multisystemic involvement, and evolution of imaging findings is essential for effective patient management and treatment. To date, only a few articles have been published that comprehensively describe the multisystemic imaging manifestations of COVID-19. The authors provide an inclusive system-by-system image-based review of this life-threatening and rapidly spreading infection. In part 1 of this article, the authors discuss general aspects of the disease, with an emphasis on virology, the pathophysiology of the virus, and clinical presentation of the disease. The key imaging features of the varied pathologic manifestations of this infection that involve the pulmonary and peripheral and central vascular systems are also described. Part 2 will focus on key imaging features of COVID-19 that involve the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as pediatric and pregnancy-related manifestations of the virus. Vascular complications pertinent to each system will be also be discussed in part 2. Online supplemental material is available for this article. ©RSNA, 2020.

Autoři článku: Rowelambertsen6405 (Straarup Chung)