Rosenkildepetty1739
miR166s play an important role in plant tissue differentiation. However, the functions of miR166s in the differentiation of vascular tissue in bamboo have not yet been elucidated. Here, we showed that five miR166s are overexpressed (tags per million reads > 2,000) in underground shoot samples of wild-type (WT) Moso bamboo (Phyllostachys edulis) and a thick-walled variant (P. edulis "Pachyloen") throughout the developmental process. Potential targets of these miR166s include some genes encoding homeodomain-leucine zipper (HD-ZIP) transcription factors and protein kinases. Cleavage sites for miR166s were identified in seven PeHD-ZIP homologs and a protein kinase gene via degradome sequencing (p less then 0.05). Dual-luciferase and transient expression assays confirmed the binding of miR166s to PeHOXs. Fluorescence in situ hybridization revealed that miR166s were localized to the xylem of the leaf, root, and internode of 2-month-old pot seedlings of WT Moso bamboo. Overall, these findings reveal that miR166s are regulators of vascular tissue differentiation in bamboo. The miR166s identified in our study provide novel targets for bamboo breeding.Cymbidium ensifolium L. is a significant ornamental plant in Orchidaceae. Aside from its attractive flowers, its leaf coloration is also an important ornamental trait. However, there is an apparent lack of studies concerning the intricate mechanism of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation of leaf coloration utilizing transcriptome and metabolome profiles of purple, yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were quantified along with chlorophyll content. The tissue-transcriptome profile identified 26,499 differentially expressed genes (DEGs). The highest chlorophyll contents were identified in green leaves, followed by yellow and purple leaves. We identified key anthocyanins and flavonoids associated with leaf coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and AMP-binding enzyme were identified as key structural genes affecting leaf coloration in C. ensifolium. In summary, copigmentation resulting from several key metabolites modulated by structural genes was identified as governing leaf coloration in C. ensifolium. mTOR inhibitor Further functional verification of the identified DEGs and co-accumulation of metabolites can provide a tool to modify leaf color and improve the aesthetic value of C. ensifolium.Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its prognosis remains unsatisfactory. Identification of epigenetic biomarkers associated with radiosensitivity is beneficial for precision medicine in LUAD patients. SETD2 is important in repairing DNA double-strand breaks and maintaining chromatin integrity. Our studies established a comprehensive analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-omics analysis revealed enhanced chromatin accessibility and gene transcription by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), we found that SETD2-associated positive transcription patterns were associated with DNA damage responses. SETD2 knockdown significantly upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover, SETD2 was a favorably prognostic factor whose effects were antagonized by the m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising epigenetic biomarker in LUAD patients.Lung squamous cell carcinoma (LUSC) is the second most common histopathological subtype of lung cancer, and smoking is the leading cause of this type of cancer. However, the critical factors that directly affect the survival rate and sensitivity to immunotherapy of smoking LUSC patients are still unknown. Previous studies have highlighted the role of N6-methyladenosine (m6A) RNA modification, the most common epigenetic modification in eukaryotic species, together with immune-related long non-coding RNAs (lncRNAs) in promoting the development and progression of tumors. Thus, elucidating m6A-modified immune lncRNAs in LUSC patients with smoking history is vital. In this study, we described the expression and mutation features of the 24 m6A-related regulators in the smoking-associated LUSC cohort from The Cancer Genome Atlas (TCGA) database. Then, two distinct subtypes based on the expression levels of the prognostic m6A-regulated immune lncRNAs were defined, and differentially expressed genes (DEGs) between the subtypes were identified. The distributions of clinical characteristics and the tumor microenvironment (TME) between clusters were analyzed. Finally, we established a lncRNA-associated risk model and exhaustively clarified the clinical features, prognosis, immune landscape, and drug sensitivity on the basis of this scoring system. Our findings give insight into potential mechanisms of LUSC tumorigenesis and development and provide new ideas in offering LUSC patients with individual and effective immunotherapies.Pregnancy-associated breast cancer (PABC) is diagnosed during pregnancy or within 1 year postpartum, but the unique aspects of its etiology and pathogenesis have not been fully elucidated. This study aimed to ascertain the molecular mechanisms of PABC to facilitate diagnosis and therapeutic development. The Limma package was used to characterize the differentially expressed genes in PABC as compared to non-pregnancy-associated breast cancer (NPABC) and normal breast tissue. A total of 871 dysregulated genes were identified in the PABC versus NPABC groups and 917 in the PABC versus normal groups, with notable differences in the expression of MAGE and CXCL family genes. The dysregulated genes between the PABC and normal groups were mainly associated with signal transduction and immune response, while Kyoto Encyclopedia of Genes and Genomes analysis revealed that the dysregulated genes were enriched in immune-related pathways, including the major histocompatibility complex (MHC) class II protein complex, the type I interferon signaling pathway, regulation of α-β T-cell proliferation, and the T-cell apoptotic process. Through protein-protein interaction network construction, CD44 and BRCA1 were identified as prominent hub genes with differential expression in PABC versus NPABC. Furthermore, a cluster with eleven hub genes was identified in PABC versus normal adjacent tissues, of which the expression of EGFR, IGF1, PTGS2, FGF1, CAV1, and PLCB1 were verified to be differentially expressed in an independent cohort of PABC patients. Notably, IGF1, PTGS2, and FGF1 were demonstrated to be significantly related to patient prognosis. Our study reveals a distinctive gene expression pattern in PABC and suggests that IGF1, PTGS2, and FGF1 might serve as biomarkers for diagnosis and prognosis of PABC.Objective To investigate the correlation of fibronectin 1 (FN1) expression with prognosis and tumor-infiltrating immune cells in breast cancer (BRCA). Methods FN1 mRNA and protein expressions were analyzed through Tumor Immune Estimation Resource (TIMER), Gene Set Cancer Analysis (GSCA), Human Protein Atlas (HPA) databases, and immunohistochemical analysis. The clinicopathological characteristics and genetic factors affecting the FN1 mRNA expression were assessed by various public databases. Then, we analyzed the prognostic value of FN1 in BRCA by Kaplan-Meier plotter, receiver operating characteristic, and Cox regression analyses. Further, the UCSC Xena database was used to retrieve TCGA-BRCA expression profiles for functional enrichment analysis and immune cell infiltration analysis. The potential drugs for the BRCA patients with high- FN1 expression were identified using the connectivity map analysis. Results FN1 was upregulated in BRCA tissues compared with normal tissues. High FN1 mRNA expression was correlated with poor clinical outcomes and had good performance in predicting the survival status of BRCA patients. Further, Cox regression analysis showed that FN1 was an independent prognostic factor for predicting the overall survival of patients with BRCA. Moreover, hypermethylation of FN1 contributed to a better prognosis for BRCA patients. Functional enrichment analyses revealed the ECM-receptor interaction pathway and focal adhesion as the common pathways. Moreover, FN1 showed a significant association with tumor-infiltrating immune cells and immune checkpoint inhibitors. Several drugs such as telmisartan, malotilate, and seocalcitol may have therapeutic effects in BRCA patients with high FN1 expression. Conclusion FN1 might serve as a novel prognostic biomarker and a novel therapeutic target for BRCA. Besides, the association of FN1 with immune cells and immune checkpoint inhibitors may provide assistance for BRCA treatment.Background An alternative to population-based genetic testing, automated cascade genetic testing facilitated by sharing of family health history, has been conceptualized as a more efficient and cost-effective approach to identify hereditary genetic conditions. However, existing software and applications programming interfaces (API) for the practical implementation of this approach in health care settings have not been described. Methods We reviewed API available for facilitating cascade genetic testing in electronic health records (EHRs). We emphasize any information regarding informed consent as provided for each tool. Using semi-structured key informant interviews, we investigated uptake of and barriers to integrating automated family cascade genetic testing into the EHR. Results We summarized the functionalities of six tools related to utilizing family health history to facilitate cascade genetic testing. No tools were explicitly capable of facilitating family cascade genetic testing, but few enterprise EHRs supported family health history linkage. We conducted five key informant interviews with four main considerations that emerged including 1) incentives for interoperability, 2) HIPAA and regulations, 3) mobile-app and alternatives to EHR deployment, 4) fundamental changes to conceptualizing EHRs. Discussion Despite the capabilities of existing technology, limited bioinformatic support has been developed to automate processes needed for family cascade genetic testing and the main barriers for implementation are nontechnical, including an understanding of regulations, consent, and workflow. As the trade-off between cost and efficiency for population-based and family cascade genetic testing shifts, the additional tools necessary for their implementation should be considered.The low-dose mixture hypothesis of carcinogenesis proposes that exposure to an environmental chemical that is not individually oncogenic may nonetheless be capable of enabling carcinogenesis when it acts in concert with other factors. A class of ubiquitous environmental chemicals that are hypothesized to potentially function in this low-dose capacity are synthesized polybrominated diphenyl ethers (PBDEs). PBDEs can affect correlates of carcinogenesis that include genomic instability and inflammation. However, the effect of low-dose PBDE exposure on such correlates in mammary tissue has not been examined. In the present study, low-dose long-term (16 weeks) administration of PBDE to mice modulated transcriptomic indicators of genomic integrity and innate immunity in normal mammary tissue. PBDE increased transcriptome signatures for the Nuclear Factor Erythroid 2 Like 2 (NFE2L2) response to oxidative stress and decreased signatures for non-homologous end joining DNA repair (NHEJ). PBDE also decreased transcriptome signatures for the cyclic GMP-AMP Synthase - Stimulator of Interferon Genes (cGAS-STING) response, decreased indication of Interferon Stimulated Gene Factor 3 (ISGF3) and Nuclear Factor Kappa B (NF-κB) transcription factor activity, and increased digital cytometry estimates of immature dendritic cells (DCs) in mammary tissue.