Rosariospivey1038
2 A g-1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.Although electrodes based on two dimensional hybrids with interstratification-assemble have been widely studied for supercapacitors, the performance enhancement still remains challenge mainly due to the random dispersion of surface passivated two dimensional nanosheets. Herein, a new covalent surface functionalization of MXene-based Ti3C2Cl2 nanodots-interspersed MXene@NiAl-layered double hydroxides (QD-Ti3C2Cl2@NiAl-LDHs) hybrid electrode with superior pseudocapacitor storage performance has been elaborately designed by electrostatic-assembled. As a result, the QD-Ti3C2Cl2@NiAl-LDHs electrode exhibits a super specific capacitance of 2010.8F g-1 at 1.0 A g-1 and high energy density of 100.5 Wh kg-1 at a power density of 299.8 W kg-1. In addition, 94.1% capacitance retention is achieved after cycling for 10,000 cycles at 1.0 A g-1, outperforming previously reported of two dimensional hybrids electrode for supercapacitor. Furthermore, density functional theory (DFT) calculations show that the superior pseudocapacitor storage performance of the QD-Ti3C2Cl2@NiAl-LDHs may be attributed to the creation of numerous electrochemical active sites and the enhancement of electrical conductivity by the QD-Ti3C2Cl2 MXene. This work provides new strategy for developing excellent pseudocapacitor supercapacitor based on two dimensional hybrid electrode.Poor conductivity is an obstacle that restricts the development of the electrochemistry performance of Fe3O4. In this work, a novel carbon and nitrogen co-doped ultrafine Fe3O4 nanoparticles (CN-Fe3O4) have been synthesized by triethylamine (TEA) induction and subsequent calcination. The addition of TEA could not only regulate the size of Fe3O4 nanoparticles, but also promote the formation of amorphous carbon layer. Well-designed CN-Fe3O4 heterostructures provide a highly interconnected porous conductive network, large heterogeneous interface area, large specific surface area and a large number of active sites, which greatly improve conductivity and promote electron transfer and electrolyte diffusion. The prepared CN-Fe3O4 electrode exhibits a high specific capacitance of 399.3 mF cm-2 and good cycling stability. Meanwhile, CN-Fe3O4 catalyst exhibits excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities, with overpotentials of 136 and 281 mV at the current density of 10 mA cm-2, respectively. This work provides a promising approach for the design of high-performance anode materials for supercapacitors and provides profound implications for the development of catalysts with bifunctional catalytic activity.The poor conductivity of sulfur, the lithium polysulfide's shuttle effect, and the lithium dendrite problem still impede the practical application of lithium-sulfur (Li-S) batteries. In this work, the ultrathin nickel-doped tungsten sulfide anchored on reduced graphene oxide (Ni-WS2@rGO) is developed as a new modified separator in the Li-S battery. The surface engineering of Ni-WS2@rGO could enhance the cell conductivity and afford abundant chemical anchoring sites for lithium polysulfides (LiPSs) adsorption, which is convinced by the high adsorption energy and the elongate SS bond given using density-functional theory (DFT) calculation. Concurrently, the Ni-WS2@rGO as a modified separator could effectively catalyze the conversion of LiPSs during the charging/discharging process. The Li-S cell with Ni-WS2@rGO modified separator achieves a high initial capacity of 1160.8 mA h g-1 at the current density of 0.2C with a high-sulfur-content cathode up to 80 wt%, and a retained capacity of 450.7 mA h g-1 over 500 cycles at 1C, showing an efficient preventing polysulfides shuttle to the anode while having no influence on Li+ ion transference across the decorating separator. The strategy adopted in this work would afford an effective pathway to construct an advanced functional separator for practical high-energy-density Li-S batteries.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition associated with coagulopathy which may result in severe thromboembolic complications. Cardiac injury is not uncommon in hospitalized COVID-19 patients and therefore we aimed to investigate whether it stems from an abnormal coagulative state.
We conducted a retrospective cross-sectional study on consecutive patients hospitalized due to COVID-19. Traditional coagulation and whole blood rotational thromboelastometry tests were compared between patients with and without cardiac injury. Cardiac injury was defined by increased levels of high-sensitivity cardiac troponin I (hs-cTnI).
The study population consisted of 104 patients (67% males, median age 65 years), of whom 40 (38%) developed cardiac injury. selleck products No clinical differences in the traditional coagulation parameters were observed between patients with and without cardiac injury. Thromboelastometry analysis revealed abnormal maximum clot firmness (MCF) levels in FIBTEM assay in 80 (77%) patients. link2 No significant differences in MCF values (p=0.450) and percentage of abnormal MCF (p=0.290) were detected between patients with and without cardiac injury. Cardiac injury - not hypercoagulability - was associated with mortality (p=0.016).
No differences in traditional coagulation and rotational thromboelastometry parameters were found among hospitalized COVID-19 patients with and without cardiac injury. Other mechanisms besides hypercoagulability may be a main culprit for cardiac injury in COVID-19 patients.
No differences in traditional coagulation and rotational thromboelastometry parameters were found among hospitalized COVID-19 patients with and without cardiac injury. Other mechanisms besides hypercoagulability may be a main culprit for cardiac injury in COVID-19 patients.Blue eye disease (BED) in pigs is caused by Porcine orthorubulavirus (PRV) of the Paramyxoviridae family. It is an endemic disease in swine production in the central region of Mexico and causes nervous signs and high mortality in suckling pigs, pneumonia in growing pigs, orchitis in boars and mummification during gestation. PRV hemagglutinates most red blood cells (RBCs) of domestic species. For serological diagnosis, the hemagglutination inhibition test is used, and in this test, guinea pig, bovine and chicken RBCs have been commonly used. In this investigation, hemagglutination with PRV was evaluated using the RBCs of seven domestic species (chicken, bovine, horse, pig, dog, guinea pig and rabbit). In the hemagglutination test, the following parameters were evaluated temperature (25 °C and 37 °C), bottoms of the wells (V and U), erythrocyte concentration (0.5%, 0.75%, and 1%), and reading time (15, 30, 45, 60 and 90 min). Significant differences (P less then 0.001) were found in most of the evaluated treatments. The best hemagglutination results were obtained with chicken, bovine and horse RBCs. The hemagglutination titer is higher (2 dilutions) when using chicken RBCs than when using bovine or horse RBCs. If chicken RBCs are used in the inhibition of hemagglutination, the test will be more sensitive, while it is more specific when bovine or horse RBCs are used. The hemagglutination readings are imprecise when using RBCs from dogs, pigs, guinea pigs and rabbits. RBCs from these species should not be used for the diagnosis or investigation of PRV.Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by inhibiting the repair of DNA strand breaks binding to PARP and regulate immune cells functions. Toll-like receptors (TLRs) mediate the tumor microenvironment through the modulation of proinflammatory cytokines and chemokines. In this context, this study addressed the relationship between the efficacy of talazoparib (TAL) as a PARPi and the activation of TLR3 or TLR9 by Polyinosinicpolycytidylic acid (Poly IC) or CpG oligodeoxynucleotides (CpG-ODN) stimulation, respectively in triple negative breast cancer (TNBC). link3 TAL alone and the combination of TAL with Poly IC or CpG-ODN induced cell death were analyzed by water-soluble tetrazolium salt 1 (WST-1), Annexin V analysis, acridine orange staining and mRNA levels of caspase-3 and caspase-8 in HCC1937 and HCC1937-R (TAL resistant) TNBC cells. Additionally, the expression of TLR3, TLR9 and interferon regulatory factor 7 (IRF7) was observed with immunofluorescence staining and western blot analysis. Our findings showed that TAL induced TLR3 and TLR9 activation and acted in synergy with TLR3 and TLR9 agonists in TNBC cells. The stimulation of TLR3 or TLR9 and TAL treatment caused significantly more apoptosis in TNBC cells through the over-expression of caspase-3 and caspase-8. Additionally, TAL combined with Poly IC or CpG-ODN more increased TLR3, TLR9 and IRF7 protein levels in HCC1937 cells and treatment with TAL and Poly IC had greater potential for overcoming TAL resistance. In conclusion, the combination of PARPi with TLR agonists may be a new therapeutic combined strategy for the effective immunotherapy of TNBC.
Complement activation plays an important pathogenic role in numerous diseases. The ratio between an activation product and its parent protein is suggested to be more sensitive to detect complement activation than the activation product itself. In the present study we explored whether the ratio between the activation product and the parent protein for C3 (C3bc/C3) and for C5 (sC5b-9/C5) increased the sensitivity to detect complement activation in acute clinical settings compared to the activation product alone.
Samples from patients with acute heart failure following ST-elevated myocardial infarction (STEMI) and from patients with out-of-hospital cardiac arrest (OHCA) were used. C3, C3bc and C5, sC5b-9 were analysed in 629 and 672 patient samples, respectively. Healthy controls (n = 20) served to determine reference cut-off values for activation products and ratios, defined as two SD above the mean.
Increased C3bc/C3- and sC5b-9/C5 ratios were vastly dependent on C3bc and sC5b-9. Thus, 99.5 % and 98.1 % of the increased C3bc/C3- and sC5b-9/C5 ratios were solely dependent on increased C3bc and sC5b-9, respectively. Significantly decreased C3 and C5 caused increased ratios in only 3/600 (0.5 %) and 4/319 (1.3 %) samples, respectively. Strong correlations between C3bc and C3bc/C3-ratio and between sC5b-9 and sC5b-9/C5-ratio were found in the STEMI- (r = 0.926 and r = 0.786, respectively) and the OHCA-population (r = 0.908 and r = 0.843, respectively; p < 0.0001 for all). Importantly, sC5b-9 identified worse outcome groups better than sC5b-9/C5-ratio.
C3bc and sC5b-9 were sensitive markers of complement activation. The ratios of C3bc/C3 and sC5b-9/C5 did not improve detection of complement activation systemically.
C3bc and sC5b-9 were sensitive markers of complement activation. The ratios of C3bc/C3 and sC5b-9/C5 did not improve detection of complement activation systemically.