Rollinsgilbert2744

Z Iurium Wiki

A better characterization of study participants with SCI together with documentation of confounding factors such as antispasticity medication or neuropathic pain is indicated. © 2020 Elsevier B.V. All rights reserved.Traumatic brain injury (TBI) represents a major clinical and economic challenge for health systems worldwide, and it is considered one of the leading causes of disability in young adults. https://www.selleckchem.com/products/vu661013.html The recent development of brain-computer interface (BCI) tools to target cognitive and motor impairments has led to the exploration of these techniques as potential therapeutic tools in patients with TBI. However, little evidence has been gathered so far to support applicability and efficacy of BCIs for TBI in a clinical setting. In the present chapter, results from studies using BCI approaches in conscious patients with TBI or in animal models of TBI as well as an overview of future directions in the use of BCIs to treat cognitive symptoms in this patient population will be presented. © 2020 Elsevier B.V. All rights reserved.In the past 10 years, brain-computer interfaces (BCIs) for controlling assistive devices have seen tremendous progress with respect to reliability and learnability, and numerous exemplary applications were demonstrated to be controllable by a BCI. Yet, BCI-controlled applications are hardly used for patients with neurologic or neurodegenerative disease. Such patient groups are considered potential end-users of BCI, specifically for replacing or improving lost function. We argue that BCI research and development still faces a translational gap, i.e., the knowledge of how to bring BCIs from the laboratory to the field is insufficient. BCI-controlled applications lack usability and accessibility; both constitute two sides of one coin, which is the key to use in daily life and to prevent nonuse. To increase usability, we suggest rigorously adopting the user-centered design in applied BCI research and development. To provide accessibility, assistive technology (AT) experts, providers, and other stakeholders have to be included in the user-centered process. BCI experts have to ensure the transfer of knowledge to AT professionals, and listen to the needs of primary, secondary, and tertiary end-users of BCI technology. Addressing both, usability and accessibility, in applied BCI research and development will bridge the translational gap and ensure that the needs of clinical end-users are heard, understood, addressed, and fulfilled. © 2020 Elsevier B.V. All rights reserved.Neuromodulation therapies offer a unique opportunity for translating brain-computer interface (BCI) technologies into a clinical setting. Several diseases such as Parkinson's disease are effectively treated by invasive device stimulation therapies, and the addition of sensing and algorithm technology is an obvious evolutionary expansion of capabilities. In addition, this infrastructure might enable a roadmap of novel BCI technologies. While the initial applications are focused on epilepsy and movement disorders, the technology is potentially transferable to a broader base of disorders, including stroke and rehabilitation. The ultimate potential of BCI technology will be determined by forthcoming chronic evaluation in multiple neurologic disorders. © 2020 Elsevier B.V. All rights reserved.A brain-computer interface (BCI) records and extracts features from brain signals, and translates these features into commands that can replace, restore, enhance, supplement, or improve natural CNS outputs. As demonstrated in the other chapters of this book, the focus of the work of the last three decades of BCI research has been the replacement, restoration, or improvement of diminished or lost function in people with CNS disease or injury including those with amyotrophic lateral sclerosis (ALS). Due in part to the desire to conduct controlled studies, and, in part, to the complexity of BCI technology, most of this work has been carried out in laboratories with healthy controls or with limited numbers of potential consumers with a variety of diagnoses under supervised conditions. The intention of this chapter is to describe the growing body of BCI research that has included people with amyotrophic lateral sclerosis (ALS). People in the late stages of ALS can lose all voluntary control, including the ability to communicate; and while recent research has provided new insights into underlying mechanisms, ALS remains a disease with no cure. As a result, people with ALS and their families, caregivers, and advocates have an active interest in both the current and potential capabilities of BCI technology. The focus of BCI research for people with ALS is on communication, and this topic is well covered elsewhere in this volume. This chapter focuses on the efforts dedicated to make BCI technology useful to people with ALS in their daily lives with a discussion of how researchers, clinicians, and patients must become partners in that process. © 2020 Elsevier B.V. All rights reserved.Brain-computer interface (BCI) technology will usher in profound changes to the practice of medicine. BCI devices, broadly defined as those capable of reading brain activity and translating this into operation of a device, will offer patients and clinicians new ways to address impairments of communication, movement, sensation, and mental health. These new capabilities will bring new responsibilities and raise a diverse set of ethical challenges. One way to understand and begin to address these challenges is to view them in terms of the goals of medicine. In this chapter, different ways in which BCI technology may subserve the goals of medicine is explored. This is followed by articulation of additional goals particularly relevant to BCI technology neural diversity, neural privacy, agency, and authenticity. The goals of medicine provide a useful ethical framework for the introduction of BCI devices into medicine. © 2020 Elsevier B.V. All rights reserved.Brain-computer interfaces (BCIs) are systems that translate brain activity patterns into commands that can be executed by an artificial device. This enables the possibility of controlling devices such as a prosthetic arm or exoskeleton, a wheelchair, typewriting applications, or games directly by modulating our brain activity. For this purpose, BCI systems rely on signal processing and machine learning algorithms to decode the brain activity. This chapter provides an overview of the main steps required to do such a process, including signal preprocessing, feature extraction and selection, and decoding. Given the large amount of possible methods that can be used for these processes, a comprehensive review of them is beyond the scope of this chapter, and it is focused instead on the general principles that should be taken into account, as well as discussing good practices on how these methods should be applied and evaluated for proper design of reliable BCI systems. © 2020 Elsevier B.V. All rights reserved.

Autoři článku: Rollinsgilbert2744 (Sampson Salling)