Roedlott6175
Portulaca oleracea L. is used as a folk medicine in many countries because of its wide range of pharmacological effects. HM-chromanone, isolated from P. oleracea using bioassay-guided fractionation and HPLC, belongs to the homoisoflavonoid group and has been shown to exert several biological effects. In this study, we evaluated whether HM-chromanone inhibits adipogenesis by regulating adipogenic transcription factors in 3T3-L1 adipocytes. The results showed that HM-chromanone suppresses adipocyte differentiation and adipogenesis in a dose-dependent manner in 3T3-L1 adipocytes. The HM-chromanone-treated adipocytes exhibited lower triglyceride accumulation and leptin secretion, and higher glycerol and adiponectin secretion than the control adipocytes. Microscopic observation using oil red O staining revealed a dose-dependent reduction in the number of lipid droplets in the HM-chromanone-treated adipocytes compared to the control group. HM-chromanone significantly down-regulated the protein expression of major adipogenic transcription factors sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) and markedly inhibited several key adipogenic enzymes including fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were both more activated in the HM-chromanone-treated adipocytes than in the control adipocytes. selleckchem HM-chromanone also promoted the phosphorylation of 5' Adenosine monophosphate-activated protein kinase (AMPK), which inhibits adipogenesis through the regulation of adipogenic transcription factors. These results suggest that HM-chromanone may be an effective anti-adipogenesis agent that functions via the suppression of adipogenic transcription factors and the activation of AMPK.Green dock beetles Gastrophysa viridula and Colorado potato beetles Leptinotarsa decemlineata having distinctly different body mass and gait habits were compared with respect to their tarsal morphology and attachment ability. The focus laid on shapes and dimensions of tenent setae related to the peeling line, i.e., the sum of widths of all thin-film elements participating in contact. High-speed rotation of the two leaf beetle species attached to the horizontal and vertical sides of a Plexiglass drum resulted in higher attachment forces of the heavier beetle species that has a larger number of tarsal setae and a larger peeling line length. However, normalizing the measured forces with the corresponding peeling line lengths led to a reversed relationship. This allowed us to assume that the design of adhesive setae in different leaf beetle species matches the requirements imposed by their habitats. In accordance with the theory of thin film peeling, tangential forces were found to be higher than normal forces. The attachment system of females was found to exhibit stronger functional efficiency, which can be correlated to the morphology of their setae.Pheromones are chemical communication signals known to elicit stereotyped behaviours and/or physiological processes in individuals of the same species, generally in relation to a specific function (e.g. mate finding in moths). However, recent research suggests that pheromones can modulate behaviours, which are not directly related to their usual function and thus potentially affect behavioural plasticity. To test this hypothesis, we studied the possible modulatory effects of pheromones on olfactory learning and memory in Agrotis ipsilon moths, which are well-established models to study sex-pheromones. To achieve this, sexually mature male moths were trained to associate an odour with either a reward (appetitive learning) or punishment (aversive learning) and olfactory memory was tested at medium- and long-term (1 h or 1.5 h, and 24 h). Our results show that male moths can learn to associate an odour with a sucrose reward, as well as a mild electric shock, and that olfactory memory persists over medium- and long-term range. Pheromones facilitated both appetitive and aversive olfactory learning exposure to the conspecific sex-pheromone before conditioning enhanced appetitive but not aversive learning, while exposure to a sex-pheromone component of a heterospecific species (repellent) facilitated aversive but not appetitive learning. However, this effect was short-term, as medium- and long-term memory were not improved. Thus, in moths, pheromones can modulate olfactory learning and memory, indicating that they contribute to behavioural plasticity allowing optimization of the animal's behaviour under natural conditions. This might occur through an alteration of sensitization.The comet assay is one of the standard tests for evaluating the genotoxic potential of a test item able to detect DNA strand breaks in cells or isolated nuclei from various tissues. The in vivo alkaline comet assay is part of the standard test battery, given in option 2 of the ICH guidance S2 (R1) and a follow-up test in the EFSA framework on genotoxicity testing. The current OECD guideline for the testing of chemicals No. 489 directly affects the statistical analysis of comet data as it suggests using the median per slide and the mean of all medians per animal. However, alternative approaches can be used if scientifically justified. In this work, we demonstrated that the selection of different centrality measures to describe an average value per slide may lead to fundamentally different statistical test results and contradicting interpretations. Our focus was on geometric means and medians per slide for the primary endpoint "tail intensity". We compared both strategies using original and simulated data in different experimental settings incl. a varying number of animals, slides and cells per slide. In general, it turned out that the chosen centrality measure has an immense impact on the final statistical test result.The eukaryotic alga Chlamydomonas (C.) reinhardtii is used as a model organism to study photosynthetic efficiency. We studied the organization and protein profile of thylakoid membranes under severe iron (Fe2+) deficiency condition and iron supplement for their restoration. Chlorophyll (Chl) a fluorescence fast OJIP transients were decreased in the severe Fe2+ deficient cells resulting in the reduction of the photochemical efficiency. The circular dichroism (CD) results from Fe2+ deficient thylakoid membranes show a significant change in pigment-pigment and pigment-protein excitonic interactions. The organization of super-complexes was also affected significantly. Furthermore, super-complexes of photosystem (PS) II and PSI, along with its dimers, were severely reduced. The complexes separated using sucrose gradient centrifugation shows that loss of super-complexes and excitonic pigment-pigment interactions were restored in the severely Fe2+ deficient cells upon Fe supplementation for three generations. Additionally, the immunoblots demonstrated that both PSII, PSI core, and their light-harvesting complex antenna proteins were differentially decreased.