Robbhoughton1805
Correlated electronic materials (CEMs) with strong electron-electron interactions are often associated with exotic properties, such as metal-insulator transition (MIT), charge density wave (CDW), superconductivity, and magnetoresistance (MR), which are fundamental to next generation condensed matter research and electronic devices. When the dimension of CEMs decreases, exposing extremely high specific surface area and enhancing electronic correlation, the surface states are equally important to the bulk phase. Therefore, surface/interface chemical interactions provide an alternative route to regulate the intrinsic properties of low-dimensional CEMs. Here, recent achievements in surface/interface chemistry engineering of low-dimensional CEMs are reviewed, using surface modification, molecule-solid interaction, and interface electronic coupling, toward modulation of conducting solids, phase transitions including MIT, CDW, superconductivity, and magnetism transition, as well as external-field response. Surface/interface chemistry engineering provides a promising strategy for exploring novel properties and functional applications in low-dimensional CEMs. Finally, the current challenge and outlook of the surface/interface engineering are also pointed out for future research development.The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT-driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. find more Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host-guest complexation between cyclodextrin-grafted hyaluronic acid (HA-CD) and adamantine-conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa-mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT-mediated immune evasion through inhibiting expression of c-Myc and PD-L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.MnO2 nanoparticles have been widely employed in cancer immunotherapy, playing a subsidiary role in assisting immunostimulatory drugs by improving their pharmacokinetics and/or creating a favorable microenvironment. Here, the stereotype of the subsidiary role of MnO2 nanoparticles in cancer immunotherapy is challenged. This study unravels an intrinsic immunomodulatory property of MnO2 nanoparticles as a unique nutrient-responsive immunogenic cell death (ICD) inducer, capable of directly modulating immunosurveillance toward tumor cells. MnO2 nanoflowers (MNFs) constructed via a one pot self-assembly approach selectively induce ICD to nutrient-deprived but not nutrient-replete cancer cells, which is confirmed by the upregulated damage associated molecular patterns in vitro and a prophylactic vaccination in vivo. The underlying mechanism of the MNFs-mediated selective ICD induction is likely associated with the concurrently upregulated oxidative stress and autophagy. Built on their unique immunomodulatory properties, an innovative nanomaterials orchestrated cancer starvation-immunotherapy is successfully developed, which is realized by the in situ vaccination with MNFs and vascular disrupting agents that cut off intratumoral nutrient supply, eliciting potent efficacy for suppressing local and distant tumors. These findings open up a new avenue toward biomedical applications of MnO2 materials, enabling an innovative therapeutics paradigm with great clinical significance.Manganese (Mn)-based cathode materials have garnered huge research interest for rechargeable aqueous zinc-ion batteries (AZIBs) due to the abundance and low cost of manganese and the plentiful advantages of manganese oxides including their different structures, wide range of phases, and various stoichiometries. A novel in situ generated Mn-deficient ZnMn2O4@C (Mn-d-ZMO@C) nanoarchitecture cathode material from self-assembly of ZnO-MnO@C for rechargeable AZIBs is reported. Analytical techniques confirm the porous and crystalline structure of ZnO-MnO@C and the in situ growth of Mn deficient ZnMn2O4@C. The Zn/Mn-d-ZMO@C cell displays a promising capacity of 194 mAh g-1 at a current density of 100 mA g-1 with 84% of capacity retained after 2000 cycles (at 3000 mA g-1 rate). The improved performance of this cathode originates from in situ orientation, porosity, and carbon coating. Additionally, first-principles calculations confirm the high electronic conductivity of Mn-d-ZMO@C cathode. Importantly, a good capacity retention (86%) is obtained with a year-old cell (after 150 cycles) at 100 mA g-1 current density. This study, therefore, indicates that the in situ grown Mn-d-ZMO@C nanoarchitecture cathode is a promising material to prepare a durable AZIB.Real-time, high signal intensity, and prolonged detection is challenging because of the rarity of fluorophores with both high photostability and luminescence efficiency. In this work, new donor-acceptor (D-A) molecules for overcoming these limitations are reported. A hybridized local and an intramolecular charge-transfer excited state is demonstrated to afford high photoluminescence efficiency of these D-A molecules in solution (≈100%). The twisted molecular structure and bulky alkyl chains effectively suppress π-π and dipole-dipole interactions, enabling high luminescence efficiency of 1 and 2 in the solid state (≈94% and 100%). Furthermore, two D-A aggregates exhibit high photostability as evidenced by 4% and 8% of the fluorescence decreasing after 6 h of continuous irradiation in air, which is in sharp contrast to ≈95% of fluorescence decreasing in a reference compound. Importantly, with these molecules, ultrasensitive detection of sulfur mustard (SM) with a record limit of 10 ppb and selective detection of SM in complex matrices are achieved.