Rindomberntsen2661
very, and in other fundamental and applied areas.Understanding how individual dopants or substitutional atoms interact with host lattices enables us to manipulate, control, and improve the functionality of materials. However, because of the intimate coupling among various degrees of freedom in multiferroics, the atomic-scale influence of individual foreign atoms has remained elusive. Here, we unravel the critical roles of individual Sc substitutional atoms in modulating ferroelectricity at the atomic scale of typical multiferroics, Lu1-xScxFeO3, by combining advanced microscopy and theoretical studies. Atomic variations in polar displacement of intriguing topological vortex domains stabilized by Sc substitution are directly correlated with Sc atom-mediated local chemical and electronic fluctuations. The local FeO5 trimerization magnitude and Lu/Sc-O hybridization strength are found to be significantly reinforced by Sc, clarifying the origin of the strong dependence of improper ferroelectricity on Sc content. This study could pave the way for correlating dopant-regulated atomic-scale local structures with global properties to engineer emergent functionalities of numerous chemically doped functional materials.An efficient and atom-economical silver-mediated [2 + 2 + 1] cyclization protocol for the synthesis of 3,4-fused-ring-substituted and 2,5-unsubstituted selenophenes or thiophenes has been developed. Two C-Se/C-S bonds and one C-C bond were rapidly constructed in one step. Readily accessible substrates, commercially available elemental selenium/sulfur, and good functional group tolerance make this procedure attractive for the synthesis of π-conjugated material molecules.Using a q+ atomic force microscopy at low temperature, a sexiphenyl molecule is slid across an atomically flat Ag(111) surface along the direction parallel to its molecular axis and sideways to the axis. Despite identical contact area and underlying surface geometry, the lateral force required to move the molecule in the direction parallel to its molecular axis is found to be about half of that required to move it sideways. The origin of the lateral force anisotropy observed here is traced to the one-dimensional shape of the molecule, which is further confirmed by molecular dynamics simulations. We also demonstrate that scanning tunneling microscopy can be used to determine the comparative lateral force qualitatively. The observed one-dimensional lateral force anisotropy may have important implications in atomic scale frictional phenomena on materials surfaces.Carbamate-bearing carbohydrates contribute to the pharmacological properties of various natural glycosides. The catalytic site-selective carbamoylation of minimally protected pyranosides was achieved for the first time to bypass protection/deprotection sequences. 1-Carbamoylimidazoles were used as the carbamoylation reagents to circumvent the harmful and unstable phosgene and isocyanates. This borinic acid catalyzed transformation granted an expedient access to the tumor cell-binding carbamoylmannoside moiety of bleomycins and analogs in yields of 56% to 89%.An interrupted Pummerer/palladium-catalyzed fluoro-alkylation strategy was developed for alkenyl C-H fluoroalkylthiolation. Palladium-catalyzed ring-opening fluoroalkylation via aliphatic C-S bond cleavage of the vinylsulfonium salts efficiently afforded fluoroalkylthiolated alkene derivatives from readily available alkene substrates and CsF. The protocol features broad substrate scopes and good functional group tolerance under an air atmosphere. The practicability of the synthetic method was demonstrated by transforming the multisubstituted alkene products to diverse fluoroalkylthiolated N-heterocycles.Artificial intelligence and machine learning are growing computing paradigms, but current algorithms incur undesirable energy costs on conventional hardware platforms, thus motivating the exploration of more efficient neuromorphic architectures. Toward this end, we introduce here a memtransistor with gate-tunable dynamic learning behavior. By fabricating memtransistors from monolayer MoS2 grown on sapphire, the relative importance of the vertical field effect from the gate is enhanced, thereby heightening reconfigurability of the device response. Inspired by biological systems, gate pulses are used to modulate potentiation and depression, resulting in diverse learning curves and simplified spike-timing-dependent plasticity that facilitate unsupervised learning in simulated spiking neural networks. This capability also enables continuous learning, which is a previously underexplored cognitive concept in neuromorphic computing. Overall, this work demonstrates that the reconfigurability of memtransistors provides unique hardware accelerator opportunities for energy efficient artificial intelligence and machine learning.Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. Eliglustat In vivo dynamic contrastas estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.