Riggscurrie8712

Z Iurium Wiki

Our results provide some insights on the comprehension and potential application of quantum information masking.By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by attaching an electron and observed three channels for the neutralization. We rationalize that the three channels correspond to transitions to the neutral ground state, to the lowest energy triplet excited states and to the lowest energy singlet excited states. By single-electron tunneling spectroscopy we measured the energy differences between the transitions obtaining triplet and singlet excited state energies. The experimental values are compared with density functional theory calculations of the excited state energies. Our results show that molecules in excited states can be prepared and that energies of optical gaps can be quantified by controlled single-charge injections. Our work demonstrates the access to, and provides insight into, ubiquitous electron-attachment processes related to excited-state transitions important in electron transfer and molecular optoelectronics phenomena on surfaces.The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system nn→ppe^-e^- constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale 0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses) and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms of the renormalized amplitude A_ν(|p|,|p^'|), matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for 0νββ decay.Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential for generating novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. GDC-0879 solubility dmso Our numerical simulations of the full three-body wave function and analytical estimates based on Fermi's golden rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_2-xSr_xNiO_4+δ, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_2-xSr_xNiO_4+δ. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.Gravitational waves from binary black holes have the potential to yield information on both of the intrinsic parameters that characterize the compact objects their masses and spins. While the component masses are usually resolvable, the component spins have proven difficult to measure. This limitation stems in great part from our choice to inquire about the spins of the most and least massive objects in each binary, a question that becomes ill defined when the masses are equal. In this Letter, we show that one can ask a different question of the data what are the spins of the objects with the highest and lowest dimensionless spins in the binary? We show that this can significantly improve estimates of the individual spins, especially for binary systems with comparable masses. When applying this parametrization to the first 13 gravitational-wave events detected by the LIGO-Virgo Collaboration (LVC), we find that the highest-spinning object is constrained to have nonzero spin for most sources and to have significant support at the Kerr limit for GW151226 and GW170729. A joint analysis of all the confident binary black hole detections by the LVC finds that, unlike with the traditional parametrization, the distribution of spin magnitude for the highest-spinning object has negligible support at zero spin. Regardless of the parametrization used, the configuration where all of the spins in the population are aligned with the orbital angular momentum is excluded from the 90% credible interval for the first ten events and from the 99% credible interval for all current confident detections.Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a "density ladder" that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of ^208Pb (R_skin^208) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In turn, an improved value of R_skin^208 has been reported recently by the PREX collaboration. Exploiting the strong correlation between R_skin^208 and the slope of the symmetry energy L within a specific class of relativistic energy density functionals, we report a value of L=(106±37)  MeV-which systematically overestimates current limits based on both theoretical approaches and experimental measurements. The impact of such a stiff symmetry energy on some critical neutron-star observables is also examined.Dissipation dilution enables extremely low linear loss in stressed, high aspect ratio nanomechanical resonators, such as strings or membranes. Here, we report on the observation and theoretical modeling of nonlinear dissipation in such structures. We introduce an analytical model based on von Kármán theory, which can be numerically evaluated using finite-element models for arbitrary geometries. We use this approach to predict nonlinear loss and (Duffing) frequency shift in ultracoherent phononic membrane resonators. A set of systematic measurements with silicon nitride membranes shows good agreement with the model for low-order soft-clamped modes. Our analysis also reveals quantitative connections between these nonlinearities and dissipation dilution. This is of interest for future device design and can provide important insight when diagnosing the performance of dissipation dilution in an experimental setting.We propose to simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity. Effective Cooper pairs are encoded via the internal states of the atoms, and attractive interactions are realized via the exchange of virtual photons between atoms coupled to a common cavity mode. Control of the interaction strength combined with a tunable dispersion relation of the effective Cooper pairs allows exploration of the full dynamical phase diagram of the BCS model as a function of system parameters and the prepared initial state. Our proposal paves the way for the study of the nonequilibrium features of quantum magnetism and superconductivity by harnessing atom-light interactions in cold atomic gases.We report the first study on the thermal behavior of the stiffness of individual carbon nanotubes, which is achieved by measuring the resonance frequency of their fundamental mechanical bending modes. We observe a reduction of the Young's modulus over a large temperature range with a slope -(173±65)  ppm/K in its relative shift. These findings are reproduced by two different theoretical models based on the thermal dynamics of the lattice. These results reveal how the measured fundamental bending modes depend on the phonons in the nanotube via the Young's modulus. An alternative description based on the coupling between the measured mechanical modes and the phonon thermal bath in the Akhiezer limit is discussed.We theoretically study an impulsively excited quantum bouncer (QB)-a particle bouncing off a surface in the presence of gravity. A pair of time-delayed pulsed excitations is shown to induce a wave-packet echo effect-a partial rephasing of the QB wave function appearing at twice the delay between pulses. In addition, an appropriately chosen observable [here, the population of the ground gravitational quantum state (GQS)] recorded as a function of the delay is shown to contain the transition frequencies between the GQSs, their populations, and partial phase information about the wave-packet quantum amplitudes. The wave-packet echo effect is a promising candidate method for precision studies of GQSs of ultracold neutrons, atoms, and antiatoms confined in closed gravitational traps.All-optical reswitching has been investigated in the half-metallic Heusler ferrimagnet Mn_2Ru_0.9Ga, where Mn atoms occupy two inequivalent sites in the XA-type structure. The effect of a second 200 fs, 800 nm laser pulse that follows the first pump pulse, when both are above the threshold for switching, is studied as a function of t_12, the time between them. Aims were to determine the minimum time needed for reswitching and to identify the physical mechanisms involved. The time trajectory of the switching process on a plot of sublattice angular momentum, S^4a vs S^4c, is in three stages; when t10  ps.Floquet engineering is a powerful tool that drives materials with periodic light. Traditionally, the light is monochromatic, with amplitude, frequency, and polarization varied. We introduce Floquet engineering via unpolarized light built from quasimonochromatic light and show how it can modify strongly correlated systems, while preserving the original symmetries. Different types of unpolarized light can realize different strongly correlated phases As an example, we treat insulating magnetic materials on a triangular lattice and show how unpolarized light can induce a Dirac spin liquid.The Landauer principle states that at least k_BTln2 of energy is required to erase a 1-bit memory, with k_BT the thermal energy of the system. We study the effects of inertia on this bound using as one-bit memory an underdamped micromechanical oscillator confined in a double-well potential created by a feedback loop. The potential barrier is precisely tunable in the few k_BT range. We measure, within the stochastic thermodynamic framework, the work and the heat of the erasure protocol. We demonstrate experimentally and theoretically that, in this underdamped system, the Landauer bound is reached with a 1% uncertainty, with protocols as short as 100 ms.

Autoři článku: Riggscurrie8712 (Huang Newton)