Riddlemarker2138
Then, FN function was assessed using clinical evaluation methods and electrophysiological examinations, as well as retrograde labeling and axonal counting assessments of the reconstructed nerve pathways. Results The evaluations show that the remaining facial axons not only influenced the extent of regained function, such as facial symmetry, eye blinking activity, and vibrissae motion, but also had an impact on regeneration and innervation of hypoglossal motoneurons. Conclusion Participation of remaining or spontaneously regenerated facial axons plays an important role in innervating paralyzed facial muscles by both facial and hypoglossal motoneurons, thus, reestablishing facial function.The research to practice gap is a significant problem across all disciplines of healthcare. A major challenge associated with the adoption of evidence into routine clinical care is the disconnect between findings that are identified in a controlled research setting, and the needs and challenges of a real-world clinical practice setting. Implementation Science, which is the study of methods to promote research into clinical practice, provides frameworks to promote the translation of findings into practice. To begin to bridge the research-practice gap in assessing recovery in individuals with aphasia in the acute phases of recovery following stroke, clinicians in an acute care hospital and an inpatient rehabilitation hospital followed an implementation science framework to select and implement a standardized language assessment to evaluate early changes in language performance across multiple timepoints. Using a secure online database to track patient data and language metrics, clinically-accessible information was examined to identify predictors of recovery in the acute phases of stroke. We report on the feasibility of implementing such standardized assessments into routine clinical care via measures of adherence. We also report on initial analyses of the data within the database that provide insights into the opportunities to track change. This initiative highlights the feasibility of collecting clinical data using a standardized assessment measure across acute and inpatient rehabilitation care settings. Practice-based evidence may inform future research by contributing pilot data and systematic observations that may lead to the development of empirical studies, which can then feed back into clinical practice.Objective To evaluate the extent to which cancer, a biological opposite to neurodegenerative disorders, may affect the onset and progression of Parkinson's disease (PD). Methods A nested case-control design in consecutive PD patients with (cases) vs. without (controls) cancer was used to compare time to clinical diagnosis and time to Hoehn & Yahr (H&Y) staging score ≥ 3 as a measure of progression. Further, we compared PD onset and progression between cases with cancer diagnosis before (cancer before PD group) and after (cancer after PD group) PD onset. Independent variables were age at PD onset, motor subscale of the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, sex, cognitive impairment, falls, depression, anxiety, dementia, and autonomic symptoms. Time to H&Y ≥ 3 was determined using Cox proportional hazards, with adjusted results summarized as hazards ratio (HR). Group differences were evaluated using unpaired t-test or Fisher's exact test. Results The clinical PD onset was later in cases vs. controls (median 67.2 vs. 59.8 years; p less then 0.001), but the adjusted time to H&Y ≥ 3 was similar between groups (HR = 0.67; p = 0.13). Skin cancers constituted 75% of all cancers in cases. Amongst skin cancers, compared to controls, cases had an older age at PD onset (67.8 vs. 59.8 years; p less then 0.001). There was no difference in risk of progression in PD patients with skin cancer compared to controls (HR = 0.54, p = 0.09). Conclusions Cancer, in particular of the skin, may delay the onset but not the progression of PD. Future prospective observational studies are warranted to elucidate the complex interactions between these biologically divergent disorders.Background Early imaging-based treatment response assessment of brain metastases following stereotactic radiosurgery (SRS) remains challenging. The aim of this study is to determine whether early (within 12 weeks) intratumoral changes in interstitial fluid pressure (IFP) and velocity (IFV) estimated from computational fluid modeling (CFM) using dynamic contrast-enhanced (DCE) MRI can predict long-term outcomes of lung cancer brain metastases (LCBMs) treated with SRS. C-176 Methods Pre- and post-treatment T1-weighted DCE-MRI data were obtained in 41 patients treated with SRS for intact LCBMs. The imaging response was assessed using RANO-BM criteria. For each lesion, extravasation of contrast agent measured from Extended Tofts pharmacokinetic Model (volume transfer constant, Ktrans) was incorporated into a computational fluid model to estimate tumor IFP and IFV. Estimates of mean IFP and IFV and heterogeneity (skewness and kurtosis) were calculated for each lesion from pre- and post-SRS imaging. The Wilcoxon rank-sumse was associated with lower post-treatment tumor heterogeneity, as represented by reductions in IFP skewness and kurtosis. These results suggest that early post-treatment assessment of IFP and IFV can be used to predict long-term response of lung cancer brain metastases to SRS, allowing a timelier treatment modification.Importance Superior semicircular canal dehiscence (SSCD) is a treatable condition, but current diagnostic modalities have numerous limitations. Clinicians would benefit from an additional tool for diagnostic workup that is both rapid and widely available. Objective To assess the utility of ambient pressure tympanometry (APT) in the diagnostic workup of SSCD by determining the sensitivity and specificity of APT for SSCD in comparison to other diagnostic modalities. Design Retrospective cohort study of patients who underwent APT and temporal bone computerized tomography (CT) scans from May 2017 to July 2018. Setting Tertiary referral center. Participants APT was performed as part of routine audiological testing on adult patients. We retrospectively analyzed all patients who received both APT and temporal bone CT scans, and divided ears into SSCD and non-SSCD groups based on the presence or absence of radiographic SSCD. Ears with other radiographic findings that could affect tympanic membrane compliance were excluded.