Richtermccracken3268
As one of the major causes of concrete deterioration, the carbonation of concrete has been widely investigated over recent decades. In recent years, the effect of mechanical load on carbonation has started to attract more attention. https://www.selleckchem.com/products/CGS-21680-hydrochloride.html The load-induced variations in crack pattern and pore structure have a significant influence on CO2 transport which determines the carbonation rate. With different types of load, the number, orientation, and position of the induced cracks can be different, which will lead to different carbonation patterns. In this review paper, the carbonation in cracked and stress-damaged concrete is discussed first. Then, literature about the effect of sustained load during carbonation is compared in terms of load type and load level. Finally, the advantages and disadvantages of possible test methods for investigating the effect of sustained load on carbonation are discussed with respect to loading devices, load compensation, and specimen size.The aim of the present study was to evaluate the in vivo bone response to an additively manufactured zirconia surface compared to osseointegration into titanium (Ti) surfaces. Scanning electron microscopy, confocal laser scanning microscopy, and electron spectroscopy for chemical analysis were performed to assess the surface characteristics of implant specimens. For the in vivo evaluation, eight Ti implants and eight 3D-printed zirconia implants were used. The surface of four Ti implants was sandblasted, large-grit, and acid-etched (Ti-SLA group), while those of the other four Ti implants were left untreated (Ti-turned group). The zirconia implants had no further surface modification. Implants were placed into the tibiae of four rabbits; two received the Ti-SLA and zirconia implants and the other two received Ti-turned and zirconia implants. The experimental animals were sacrificed after four weeks of surgery, and the undecalcified microscopic slides were prepared. The bone-implant interface was analyzed by histomorphometry to evaluate the bone response. The degree of surface roughness showed that Ti-SLA was the highest, followed by zirconia and Ti-turned surfaces. The 3D-printed zirconia surface showed similar bone-to-implant contact to the Ti-turned surface, and Ti-SLA had the most bone-to-implant contact. The additively manufactured zirconia implant surface is biocompatible with respect to osseointegration compared to the commercially pure Ti surface.Ionic substitutions within the hydroxyapatite lattice are a widely used approach to mimic the chemical composition of the bone mineral. In this work, Sr-substituted and Mg- and Sr-co-substituted calcium phosphate (CaP) scaffolds, with various levels of strontium and magnesium substitution, were prepared using the hydrothermal method at 200 °C. Calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH4H2PO4), strontium nitrate (Sr(NO3)2), and magnesium perchlorate (Mg(ClO4)2) were used as reagents. Materials were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Whole powder pattern decomposition refinements of XRD data indicated that increased magnesium content in the Mg- and Sr-co-substituted scaffolds was related to an increased proportion of the whitlockite (WH) phase in the biphasic hydroxyapatite (HAp)/WH scaffolds. In addition, refinements indicate that Sr2+ ions have replaced Ca2+ sites in the WH phase. Furthermore, PCL-coated Mg-substituted and Sr- and Mg-co-substituted scaffolds, with the HApWH wt. ratio of 9010 were prepared by vacuum impregnation. Results of compression tests showed a positive impact of the WH phase and PCL coating on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on composite scaffolds in an osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-Sr-CaP/PCL scaffold exhibited higher expression of collagen type I than the Mg-CaP/PCL scaffold, indicating the positive effect of Sr2+ ions on the differentiation of hMSCs, in concordance with histology results. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis confirmed an early stage of osteogenic differentiation.High-ring polycyclic aromatic hydrocarbons (PAHs, Benzo[b]fluorathene (BbFA), etc.) are difficult to biodegrade in the water environment. To address this issue, an innovative method for the preparation of MnO2 nanoflower/graphene oxide composite (MnO2 NF/GO) was proposed for adsorption removal of BbFA. The physicochemical properties of MnO2 NF/GO were characterized by SEM, TEM, XRD, and N2 adsorption/desorption and XPS techniques. Results show that the MnO2 NF/GO had well-developed specific surface area and functional groups. Batch adsorption experiment results showed that adsorption capacity for BbFA was 74.07 mg/g. The pseudo-second-order kinetic model and Freundlich isotherm model are fitted well to the adsorption data. These show electron-donor-acceptor interaction; especially π-π interaction and π complexation played vital roles in BbFA removal onto MnO2 NF/GO. The study highlights the promising potential adsorbent for removal of PAHs.Direct metal deposition (DMD) can be used for the cladding of surfaces as well as repairing and additive manufacturing of parts and features. Process monitoring and control methods ensure a consistent quality during manufacturing. Monitoring by optical emission spectroscopy of the process radiation can provide information on process conditions and the deposition layer. The object of this work is to measure optical emissions from the process using a spectrometer and identify element lines within the spectra. Single spectra have been recorded from the process. Single tracks of Co-based powder (MetcoClad21) were clad on an S235 base material. The influence of varying process parameters on the incidence and intensity of element lines has been investigated. Moreover, the interactions between the laser beam, powder jet, and substrate with regard to spectral emissions have been examined individually. The results showed that element lines do not occur regularly. Therefore, single spectra are sorted into spectra including element lines (type A) and those not including element lines (type B). Furthermore, only non-ionised elements could be detected, with chromium appearing frequently. It was shown that increasing the laser power increases the incidence of type A spectra and the intensity of specific Cr I lines. link2 Moreover, element lines only occurred frequently during the interaction of the laser beam with the melt pool of the deposition layer.This work provides a comprehensive investigation of nitrogen and aluminum doping and its consequences for the physical properties of 3C-SiC. Free-standing 3C-SiC heteroepitaxial layers, intentionally doped with nitrogen or aluminum, were grown on Si (100) substrate with different 4° off-axis in a horizontal hot-wall chemical vapor deposition (CVD) reactor. The Si substrate was melted inside the CVD chamber, followed by the growth process. Micro-Raman, photoluminescence (PL) and stacking fault evaluation through molten KOH etching were performed on different doped samples. Then, the role of the doping and of the cut angle on the quality, density and length distribution of the stacking faults was studied, in order to estimate the influence of N and Al incorporation on the morphological and optical properties of the material. In particular, for both types of doping, it was observed that as the dopant concentration increased, the average length of the stacking faults (SFs) increased and their density decreased.The present study introduces an approach to the powder metallurgical shaping of a pseudo-elastic nickel-titanium (NiTi 44 alloy) combining two different Additive Manufacturing (AM) processes, namely fused filament fabrication (FFF) and Laser Powder Bed Fusion (LPBF), by manufacturing filigree structures on top of sintered FFF parts. Both processes start with commercial gas atomized NiTi powder, which is fractionated into two classes. Using the fine fraction with particle sizes less then 15 µm, robust thermoplastic filaments based on a non-commercial binder system were produced and processed to different auxetic and non-auxetic geometries employing a commercial standard printer. FTIR analysis for thermal decomposition products was used to develop a debinding regime. After sintering, the phase transformation austenite/martensite was characterized by DSC in as sintered and annealed state. Precipitates resulting from residual impurities were detected by micrographs and XRD. They led to an increased transformation temperature. link3 Adjusting the oxygen and carbon content in the alloy remains a challenging issue for powder metallurgical processed NiTi alloys. Filigree lattice structures were built onto the surfaces of the sintered FFF parts by LPBF using the coarser powder fraction (15-45 µm). A good material bond was formed, resulting in the first known NiTi hybrid, which introduces new production and design options for future applications.A microstrip patch antenna (MPA) loaded with linear-type negative permittivity metamaterials (NPMMs) is designed. The simple linear-type metamaterials have negative permittivity at 1-10 GHz. Four groups of antennas at different frequency bands are simulated in order to study the effect of linear-type NPMMs on MPA. The antennas working at 5.0 GHz are processed and measured. The measured results illustrate that the gain is enhanced by 2.12 dB, the H-plane half-power beam width (HPBW) is converged by 14°, and the effective area is increased by 62.5%. It can be concluded from the simulation and measurements that the linear-type metamaterials loaded on the substrate of MAP can suppress surface waves and increase forward radiation well.Ultrashort pulse laser machining is subject to increase the processing speeds by scaling average power and pulse repetition rate, accompanied with higher dose rates of X-ray emission generated during laser-matter interaction. In particular, the X-ray energy range below 10 keV is rarely studied in a quantitative approach. We present measurements with a novel calibrated X-ray detector in the detection range of 2-20 keV and show the dependence of X-ray radiation dose rates and the spectral emissions for different laser parameters from frequently used metals, alloys, and ceramics for ultrafast laser machining. Our investigations include the dose rate dependence on various laser parameters available in ultrafast laser laboratories as well as on industrial laser systems. The measured X-ray dose rates for high repetition rate lasers with different materials definitely exceed the legal limitations in the absence of radiation shielding.Lightweight components are in demand from the automotive industry, due to legislation regulating greenhouse gas emissions, e.g., CO2. Traditionally, lightweighting has been done by replacing mild steels with ultra-high strength steel. The development of micro-sandwich materials has received increasing attention due to their formability and potential for replacing steel sheets in automotive bodies. A fundamental requirement for micro-sandwich materials to gain significant market share within the automotive industry is the possibility to simulate manufacturing of components, e.g., cold forming. Thus, reliable methods for characterizing the mechanical properties of the micro-sandwich materials, and in particular their cores, are necessary. In the present work, a novel method for obtaining the out-of-plane properties of micro-sandwich cores is presented. In particular, the out-of-plane properties, i.e., transverse tension/compression and out-of-plane shear are characterized. Test tools are designed and developed for subjecting micro-sandwich specimens to the desired loading conditions and digital image correlation is used to qualitatively analyze displacement fields and fracture of the core.