Richardsonhowell8698

Z Iurium Wiki

A novel and effective method named time-resolved spectral-image laser-induced breakdown spectroscopy (TRSI-LIBS) was proposed to achieve precise qualitative and quantitative analysis of milk powder quality. https://www.selleckchem.com/products/zen-3694.html To verify the feasibility of TRSI-LIBS, qualitative and quantitative analysis of milk powder quality was carried out. For qualitative analysis of foreign protein adulteration, the accuracy of models based on TRSI-LIBS was higher than those based on LIBS, with an accuracy improvement of about 5% to 10%. For the quantitative analysis of foreign protein adulteration and element content, the quantitative analysis models based on TSRI-LIBS also had better effect. For instance, limit of detection (LOD),determination coefficient of prediction (R2p), root-mean-square error of prediction (RMSEP) and average relative error of prediction (AREP) of quantitative model of calcium (Ca) content based on TRSI-LIBS improved from 1.47 mg/g, 0.95, 0.35 mg/g and 23.29% to 0.81 mg/g, 0.98, 0.20 mg/g and 12.60%.In this work, a sensitive and cost-effective method for the quantitative analysis of azole pesticides residues in six medicinal plants was established based on magnetic cyclodextrin crosslinked with tetrafluoroterephthalonitrile (Fe3O4@TFN-CDPs) coupled with high-performance liquid chromatography (HPLC). Through characterization analysis, the outer shell of Fe3O4@TFN-CDPs has observed coating with a network of the polymer and forming a core-shell structure. Under the optimum conditions, the limits of detection (LODs) and limits of qualification (LOQs) of target pesticides were ranged from 0.011 to 0.106 µg Kg-1 and from 0.036 to 0.354 µg Kg-1, respectively. Finally, the achieved recoveries of pesticides in six medicinal samples fluctuated from 60.1% to 102.3%. Altogether, this method based on Fe3O4@TFN-CDPs composites provided a new idea for the analysis of trace pesticides in complicated matrices.With the expansion of the functional food market, the qualification assessment of these products has become a major challenge, and efficient analytical tools are urgently needed. Here, a miniature mass spectrometer (MS) with self-aspiration capillary electrospray ionization (SACESI) source and ion trap analyzer was developed for rapid screening of various illegally added drugs in functional foods. No chromatographic separation was required, but a simplified two-step pretreatment method was developed to reduce the operational procedures and time consumption of the entire analysis. SACESI source uses capillary action to drive solution injection, which utilizes a simple structure and convenient operation to constitute a kind of disposable MS detection solution. To achieve accurate and automatic identification, an intelligent recognition algorithm with steps of spectrum preprocessing, characteristic peak matching, and support vector machine learning was constructed. The relative accuracy of rapid screening of 31 suspicious drugs in various samples is up to 99.78%. It achieves 100% correct identification for the 55 batches of actual samples captured by on-site inspection, which demonstrates the feasibility of the proposed analytical system and strategy in food safety applications.In this study, a molecularly imprinted polymer (MIP) electrochemical sensor based on electrochemically modified graphite paper (EM-GP) was developed for the detection of 3-MCPD for the first time. To this end, Prussian blue (PB) was electrodeposited on EM-GP to yield uniformly distributed PtNPs. The successful preparation of Pt@PB/EM-GP was verified by SEM, Raman spectroscopy, XRD,XPS, and EDS. MIP was then prepared by CV electropolymerization with template molecules (3-MCPD), and density functional theory (DFT) at M06-2X/6-31 + g (d,p) level was used to calculate the molecular-level interaction between 3-MCPD and MIP. Under the optimum conditions, the dynamic linear range of the sensing platform varied from 1 × 10-8mol/L to 5 × 10-5mol/L with a detection limit estimated to 5 × 10-9 mol/L (S/N = 3). Overall, these findings look promising for the construction of selective and quick detection platforms of 3-MCPD in food samples.In the current study, the prooxidant activities of (-)-epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) were systematically compared both in multiple in vitro models and in mice. At equimolar concentrations in vitro and in vivo, EGCG displayed powerful prooxidant effects though CGA exhibited none. In vitro, though CGA and EGCG synergistically produced hydrogen peroxide, CGA was able to scavenge hydroxyl radicals generated by EGCG/copper. Consistent with the selective modulation of reactive oxygen species produced from EGCG, CGA lowered hepatotoxicity but did not perturb hepatic AMPK activation nor the increase of hepatic Nrf2-associated proteins induced by high-dose EGCG. CGA, along with low-dose EGCG, synergistically activated hepatic AMPK and increased hepatic Nrf2-associated proteins without causing toxicity in mice. This proof-of-principle study suggests that polyphenols with potent prooxidant activities (e.g., EGCG) together with antioxidant polyphenols with noticeably low prooxidant activities (e.g., CGA) may yield health benefits with a low risk of side effects.Pectins obtained from citrus peel of different cultivars and growth regions were compared based on physicochemical properties and antioxidant activity in vitro. The physicochemical features were elucidated using Fourier transform infrared (FT-IR), molecular weight distribution, monosaccharide composition, thermal behaviors and flow behaviors. Results showed that the different cultivars and growing areas have significant effects on the properties of citrus peel pectins (CPPs). Citrus peel pectins extracted by acetic acid were highly heterogeneous polysaccharides with broad molecular weight distributions and had high proportions of the RG-I domain. Among the 10 kinds of citrus peel pectins, Shatangju (CPP-6) and Xuecheng (CPP-7) own superior antioxidant biological activity and Dahongpao (CPP-3) and Buzhihuo (CPP-9) had excellent functional properties (thermal stability and viscosity). According to the correlation analysis, molecular weight, galacturonic acid content and degree of methyl-esterification were beneficial to increase the thermal stability and viscosity of citrus peel pectins, while the rhamnose content, rhamnogalacturonan I region and lower molecular weight can improve citrus peel pectins antioxidant activity. Our findings suggest that CPP-6 and CPP-7 may be useful as a potential natural antioxidant in pharmaceutical and cosmetic industries. Meanwhile, CPP-3 has great application potential in high temperature food and CPP-9 can be used as a thickener or stabilizer in the food industry.Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.Increasing crop productivity to ensure food security for future generations is one of the greatest challenges in current plant research. This challenge is even greater due to global climate changes, as enhancing crop yields must occur against the backdrop of increasingly changing environments, particularly rising temperatures and water constraints. Global crop yield growth depends on an improved dynamic balance between carbon and water usage. Here we discuss different approaches that highlight the role of vascular tissue and guard cells in attempting to mitigate the carbon-water trade-off. We argue that crop engineering in the future will require the incorporation of a combination of improved traits. Since targeted gene modifications generally produce fewer undesirable pleiotropic effects than constitutive modifications, we envision that modifications of specific cell types, such as phloem companion cells and guard cells, represent an effective approach for adding beneficial gene modifications in the same plant. This approach will enable trait stacking to design future crops with both high yield and resilience to various climate change stresses.The majority of the proteome in eukaryotic cells is targeted to organelles. To maintain protein homeostasis (proteostasis), distinct protein quality control (PQC) machineries operate on organelles, where they detect misfolded proteins, orphaned and mis-localized proteins and selectively target these proteins into different ubiquitin-dependent or -independent degradation pathways. Thereby, PQC prevents proteotoxic effects that would disrupt organelle integrity and cause cellular damage that leads to diseases. Here, we will discuss emerging mechanisms for PQC machineries at the Golgi apparatus, the central station for the sorting and the modification of proteins that traffic to the endo-lysosomal system, or along the secretory pathway to the PM and to the extracellular space. We will focus on Golgi PQC pathways that (1) retrieve misfolded and orphaned proteins from the Golgi back to the endoplasmic reticulum, (2) extract these proteins from Golgi membranes for proteasomal degradation, (3) or selectively target these proteins to lysosomes for degradation.The actin and microtubule cytoskeletons of mammalian oocytes and zygotes exist in distinct forms at various subcellular locations. This enables each cytoskeletal system to perform vastly different functions in time and space within the same cell. In recent years, key discovery enabling tools including light-sensitive microscopy assays have helped to illuminate cytoskeletal form and function in female reproductive cell biology. New findings include unexpected participation of F-actin in oocyte chromosome segregation, oocyte specific modes of spindle self-organization as well as existence of nuclear actin polymers whose functions are only starting to emerge. Functional actin-microtubule interactions have also been identified as an important feature that supports mammalian embryo development. Other advances have revealed reproductive age-related changes in chromosome structure and dynamics that predispose mammalian eggs to aneuploidy.

Autoři článku: Richardsonhowell8698 (Koefoed Sexton)