Richardshampton2490
Activated carbon has been widely used to remove hazardous Cr(VI); however, the impact of Cr2O3 precipitate on gradually declining removal ability as pH increases has received little attention. Herein, to investigate the effect of Cr2O3, SEM-EDX (scanning electron microscope-energy dispersive X-ray analysis) coupling elements mapping of chromium-loaded powdered activated carbon (PAC) revealed that a chromium layer was formed on the PAC exterior after being treated with Cr(VI) at pH 7. XPS (X-ray photoelectron spectroscopy) study confirmed that 69.93% and 39.91% Cr2O3 precipitated on the PAC surface at pH 7 and pH 3, respectively, corresponding to 17.77 mg/g and 20 mg/g removal capacity. Exhausted PAC had a removal efficiency of 92.43% after Cr2O3 being washed by H2SO4 solution, which was much higher than the removal efficiency of 51.27 % after NaOH washing. This further verified that the intrinsically developed Cr2O3 precipitate on PAC under neutral conditions limited the durability of PAC as an adsorbent. Consecutive elution assessments confirmed that adsorption and reduction ability both declined as pH increased. Raman spectroscopy and C 1s spectra of materials demonstrated two distinct Cr(VI) removal mechanisms under pH 3 and pH 7. In conclusion, the exhausted AC after Cr(VI) adsorption can be rejuvenated after the surface coated Cr2O3 is washed by the acid solution, which can expand the longevity of AC and recover Cr(III).In recent research, the composite of Fe3O4 and metal-organic frameworks have shown great potential in removing potentially toxic metals from water. We conducted the adsorption studies of potentially toxic metal ions (Cu2+, Co2+ and Cd2+) using the composite of Fe3O4 and zeolitic imidazole framework-8 (Fe3O4@ZIF-8) for the first time. The solvothermal technique was used to synthesize the Fe3O4. find more The magnetic ZIF-8 offers high thermal stability, greater adsorption surface, good removability, and high chemical and thermal stability. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the synthesized samples. The SEM and XRD results revealed the high purity and structural integrity of ZIF-8 crystallites. To remove potentially toxic metals (Cu2+, Co2+ and Cd2+), the influence of adsorbent dosage, contact time, pH, and adsorbate concentration on the adsorption performance of Fe3O4@ZIF-8 was investigated. The Langmuir isotherm accurately represented the adsorption processes, with absorption magnitudes of Fe3O4@ZIF-8 determined to be 46.82 mg g-1, 71.29 mg g-1 and 54.49 mg g-1 for Cu2+, Co2+ and Cd2+, respectively. According to the adsorption mechanism analysis, the primary Cu2+, Co2+ and Cd2+ removal methods of Fe3O4@ZIF-8 were ion exchange and coordination bonds. The uptake capacity of Cu2+, Co2+ and Cd2+ solution by Fe3O4@ZIF-8 were not significantly affected by the presence of counter ions. The material exhibited superior regenerative properties for Cu2+, Co2+ and Cd2+ ions from water for up to three cycles. This study concluded that the Fe3O4@ZIF-8 could be a viable candidate for eliminating potentially toxic metals (Cu2+, Co2+ and Cd2+).Ti-based electrode coated with MnOx catalytic layer has presented superior electrochemical activity for degradation of organic pollution in wastewater, however, the industrial application of Ti-based MnOx electrode is limited by the poor stability of the electrode. In this study, the novel Ti-based MnOx electrodes co-incorporated with rare earth (Ce) and conductive carbon black (C) were prepared by spraying-calcination method. The Ti/CeMnOx-C electrode, with uniform and integrated surface and enhanced Mn(IV) content by C and Ce co-incorporation, could completely remove ammonia nitrogen (NH4+-N) with N2 as the main product. The cell potential and energy consumption of Ti/CeMnOx-C electrode during the electrochemical process was significantly reduced compared with Ti/MnOx electrode, which mainly originated from the enhanced electrochemical activity and reduced charge transfer resistance by Ce and C co-incorporation. The accelerated lifetime tests in sulfuric acid showed that the actual service lifetime of Ti/CeMnOx-C was ca. 25 times that of Ti/MnOx, which demonstrated the significantly promoted stability of MnOx-based electrode by Ce and C co-incorporation.A novel arginine-modified Heliotrope leaf (Arg@HL) was used as adsorbent for the crystal violet (CV) dye adsorption in a batch process. The physicochemical and morphological composition of Arg@HL were characterized by field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent amount, initial dye concentration, temperature and pH of dye solution. The optimum conditions of adsorption were found on the batch scale as followed CV concentration of 20 mg·L-1, an amount of 0.75 g·L-1 of the adsorbent, 90 min contact time, 6 pH and 25 °C temperature for Arg@HL. The results confirmed a second-order model explaining the dye crystal violet's adsorption's kinetics by Arg-Heliotrope leaves. The Langmuir model effectively defines the adsorption isotherms. The results revealed that the Arg@HL has the potential to be used as a low-cost adsorbent for the removal of CV dye from aqueous solutions.The management and disposal of excess sludge are emerging issues owing to the high costs associated with treatment. In this study, the viability of a modified bentonite was investigated as a conditioning agent for the stabilisation of heavy metals (i.e., Cu, Zn, Cr, Pb, and Cd) and the retention of nutrient species (i.e., total nitrogen (TN), total phosphorus (TP), available nitrogen (available N), and Olsen-phosphorus (Olsen-P)) in sewage sludge for agricultural use. Five grams of modified bentonite resulted in the highest stabilisation rate of heavy metals and strongly contributed to the stabilisation of heavy metals. However, increased amounts of modified bentonite might increase the TN, available N, and TP losses in the conditioned sewage sludge. Through the analytic hierarchy process modelling, optimal concentrations of nutrient species and heavy metals remaining in the conditioned sewage sludge were achieved when the ratio of bentonite to sewage sludge was 112.5 (4 g bentonite 50 g sludge). Moreover, the optimal mixing ratio of the conditioned sewage sludge to the soil (12) was suggested for agricultural use. Based on these observations, modified bentonite allowed the sewage sludge to be used as a fertiliser in agriculture by stabilising heavy metals and retaining nutrient species.This study shows the effectiveness of the wastewater treatment from a municipal slaughterhouse that has undergone a previous biological treatment applying a sequence of stages, reaching a 75% of elimination of the chemical oxygen demand (COD) using sedimentation in combination with coagulation-flocculation, using 0.5 g/L FeCl3 which is one of the best known inorganic coagulants. Then, the elimination of COD was around 98% adding the Fenton process in which 1,000 mg/L H2O2 and FeSO4 were used. In addition to the COD, other water quality parameters were measured to evaluate the level of purification of the test samples, such as solids of different types, pH, DOC and so on. With the above process, it can be noted that the Fenton process produced a slight improvement in the effluent quality by using a solar concentrator in the now-called photo-Fenton process, reaching around 99% of COD removal (0.36 g/L), 91% of total suspended solids (0.32 g/L) and 89% of dissolved organic carbon (0.20 g/L). These results were the best achieved within a proposed treatment train for this type of complex wastewater. Moreover, this last part of the process adds an improvement by the usage of renewable energy sources such as sunlight.Pollutants discharged by roads may impact water bodies and soils. The best method to characterise road runoff is by monitoring, which is not always possible due to human or material constraints. Therefore, prediction tools can be a valuable method to manage road runoff discharges and protect the environment. The present work reviewed and evaluated international tools for road runoff quality prediction, in order to assess if an existing tool could be suitable for wide usage by stakeholders in Europe. Four tools from the USA and Europe were selected and tested at 22 road sites located in regions with annual precipitation values ranging from 500 to 1,000 mm, from seven European countries. The results for the site median concentration (SMC) of total suspended solids (TSS), Zn, Cu, Pb and Cd showed coefficients of determination (R2) from 0.0004 to 0.2890 for the different pollutants and tools. It was concluded that none of the tools could predict the road runoff pollutant concentrations, except for the country where it had been calibrated. The findings support practitioners and researchers all over the world, pointing out directions, and gaps to be filled, regarding the management of road runoff discharges and use of prediction tools.The permeable brick pavement system (PBPs) is one of a widely used low impact development (LID) measures to alleviate runoff volume and pollution caused by urbanization. The performance of PBPs on decreasing runoff volume is decided by its permeability, and it was general described by hydraulic conductivity based on Darcy's law. But there is large error when using hydraulic conductivity to describe the infiltration of PBPs, and which infiltration process is not following Darcy's law, so it is important to find more accurate infiltration models to describe the infiltration of PBPs. The Horton, Philip, Green-Ampt, and Kostiakov infiltration models were selected to find an optimal model to investigate infiltration performance of PBPs via a laboratory-scale experiment, and the maximum absolute error (MAE), Bias, and coefficient of determination (R2) were selected to evaluate the models' errors via fitting with experiment data. The results showed that the fitting accuracy of Kostiakov, Philip, and Green-Ampt models was significantly affected by the monitoring area and hydraulic gradients. Meanwhile, Horton model fitted well (MAE = 0.25-0.32 cm/h, Bias = 0.07-0.11 cm/h, and R2 = 0.98-0.99) with the experiment data, and the parameters of the Horton model often can be achieved by monitoring, such as the maximum infiltration rate and the stable infiltration rate. Therefore, the Horton model is an optimal model to describe the infiltration performance of PBPs, which can also be adopted to evaluate hydrological characterization of PBPs.This study aims to investigate the effectiveness of the low impact development (LID) practices on sustainable urban flood storm water management. We applied three LID techniques, i.e. green roof, permeable pavements and bioretention cells, on a highly urbanized watershed in Istanbul, Turkey. The EPA-SWMM was used as a hydrologic-hydraulic model and the model calibration was performed by the well-known Parameter ESTimation (PEST) tool. The rainfall-runoff events occurred between 2012 and 2020. A sensitivity analysis on the parameter selection was applied to reduce the computational cost. The Nash-Sutcliffe efficiency coefficient (NSE) was used as the objective function and it was calculated as 0.809 in the model calibration. The simulations were conducted for six different return periods of a storm event, i.e. 2, 5, 10, 25, 50 and 100 years, in which the synthetic storm event hyetographs were produced by means of the alternating block method. The results revealed that the combination of green roof and permeable pavements have the major impact on both the peak flood reduction and runoff volume reduction compared to the single LIDs.