Reynoldsrouse7215
Complete hydatidiform mole (HM) is a gestational trophoblastic disease resulting in hyperproliferation of trophoblast cells and absence of embryo development. Mutations in the maternal-effect gene NLRP7 are the major cause of familial recurrent complete HM. Here, we established an in vitro model of HM using patient-specific induced pluripotent stem cells (iPSCs) derived trophoblasts harboring NLRP7 mutations. Using whole transcriptome profiling during trophoblast differentiation, we showed that impaired NLRP7 expression results in precocious downregulation of pluripotency factors, activation of trophoblast lineage markers, and promotes maturation of differentiated extraembryonic cell types such as syncytiotrophoblasts. Interestingly, we found that these phenotypes are dependent on BMP4 signaling and BMP pathway inhibition corrected the excessive trophoblast differentiation of patient-derived iPSCs. Our human iPSC model of a genetic placental disease recapitulates aspects of trophoblast biology, highlights the broad utility of iPSC-derived trophoblasts for modeling human placental diseases and identifies NLRP7 as an essential modulator of key developmental cell fate regulators.N6-methyladenosine (m6A) regulators are involved in the progression of various cancers via regulating m6A modification. However, the potential role and mechanism of the m6A modification in osteosarcoma remains obscure. In this study, WTAP was found to be highly expressed in osteosarcoma tissue and it was an independent prognostic factor for overall survival in osteosarcoma. Functionally, WTAP, as an oncogene, was involved in the proliferation and metastasis of osteosarcoma in vitro and vivo. Mechanistically, M6A dot blot, RNA-seq and MeRIP-seq, MeRIP-qRT-PCR and luciferase reporter assays showed that HMBOX1 was identified as the target gene of WTAP, which regulated HMBOX1 stability depending on m6A modification at the 3'UTR of HMBOX1 mRNA. In addition, HMBOX1 expression was downregulated in osteosarcoma and was an independent prognostic factor for overall survival in osteosarcoma patients. selleck kinase inhibitor Silenced HMBOX1 evidently attenuated shWTAP-mediated suppression on osteosarcoma growth and metastasis in vivo and vitro. Finally, WTAP/HMBOX1 regulated osteosarcoma growth and metastasis via PI3K/AKT pathway. In conclusion, this study demonstrated the critical role of the WTAP-mediated m6A modification in the progression of osteosarcoma, which could provide novel insights into osteosarcoma treatment.
This was a single-centre, retrospective, descriptive, hospital-based study in persons with spinal cord injuries (SCI) patients.
To study the incidence and characteristics of heterotopic ossification (HO) after SCI.
The in-patient services of the Department of Physical Medicine and Rehabilitation of a tertiary care institute in India between January 2001 and December 2017.
Medical records of all consecutive patients with diagnosis of SCI in the age group of 15-60 years were reviewed for presence of HO (diagnosed by clinical signs, laboratory investigations (ALP, ESR and X-rays)) and characteristics of HO. R-Ver 3.4.2 was used for analysis and correlations. Results were considered significant at P < 0.05.
A total of 303 patients satisfied inclusion criteria. Nineteen individuals (6.3%) had developed HO. Seven (37%) were diagnosed within 3 months of SCI. Twelve (63%) patients developed unilateral HO. The most common site for HO was hip joint (73%). A significant association was found between the presence of a pressure ulcer and development of HO (P = 0.01).
The incidence of HO was 6.3% in our institution and the hip joint is the most common site. Due to the presence of limited treatment options it is important to diagnose HO early in patients with SCI based on clinical features and later confirmed with laboratory tests and imaging.
The incidence of HO was 6.3% in our institution and the hip joint is the most common site. Due to the presence of limited treatment options it is important to diagnose HO early in patients with SCI based on clinical features and later confirmed with laboratory tests and imaging.Identification of a suitable nonhuman primate (NHP) model of COVID-19 remains challenging. Here, we characterized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in three NHP species Old World monkeys Macaca mulatta (M. mulatta) and Macaca fascicularis (M. fascicularis) and New World monkey Callithrix jacchus (C. jacchus). Infected M. mulatta and M. fascicularis showed abnormal chest radiographs, an increased body temperature and a decreased body weight. Viral genomes were detected in swab and blood samples from all animals. Viral load was detected in the pulmonary tissues of M. mulatta and M. fascicularis but not C. jacchus. Furthermore, among the three animal species, M. mulatta showed the strongest response to SARS-CoV-2, including increased inflammatory cytokine expression and pathological changes in the pulmonary tissues. Collectively, these data revealed the different susceptibilities of Old World and New World monkeys to SARS-CoV-2 and identified M. mulatta as the most suitable for modeling COVID-19.The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.BACKGROUND This study was designed to explore the combined effects of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation on neural stem cell proliferation in rats with spinal cord injury (SCI). MATERIAL AND METHODS SCI was induced in 90 rats by laminectomy at T10. Fifteen rats each were treated with 0.5 Hz rTMS or 10 Hz rTMS or underwent hUCB-MSC transplantation; 15 each were treated with 0.5 Hz rTMS+hUCB-MSCs or 10 Hz rTMS+hUCB-MSCs; and 15 were untreated (control group). The Basso, Beattie, and Bresnahan (BBB) scores and motor evoked potentials (MEPs) were measured, and all rats underwent biotin dextran-amine (BDA) tracing of the corticospinal tract (CST). The levels of expression of neural stem cell proliferation related proteins, including BrdU, nestin, Tuj1, Ng2+ and GFAP, were measured, and the levels of bFGF and EGF determined by Western blotting. RESULTS BBB scores and MEPs were increased after rTMS and hUCB-MSC transplantation, while histologically determined SCI-induced neuron apoptosis was attenuated. The numbers of BDA-positive fibers and Brdu-, nestin- and Tuj1-positive cells were markedly increased and the numbers of Ng2+- and GFAP-positive cells were markedly decreased following treatment with rTMS alone or rTMS plus hUCB-MSC transplantation. The levels of expression of bFGF and EGF were significantly upregulated following rTMS treatment and hUCB-MSC transplantation. Higher performance was observed after combined treatment with rTMS and hUCB-MSC transplantation than after either alone. CONCLUSIONS The combination of rTMS treatment and hUCB-MSC transplantation could attenuate SCI-induced neural stem cell apoptosis and motor dysfunction in rats.BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic that spread from China is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The head and neck region can be variably affected in adult patients, and taste and smell disorders are typical manifestations. However, pediatric clinical signs are less severe, making the onset diagnosis challenging to interpret. The variability of nasal olfactory symptoms in children and adolescents is intertwined with possible warning signs, including gastrointestinal, ocular, or dermatological symptoms. We present a case involving a 15-year-old boy with clinically confirmed COVID-19 who had late-onset rash and transient taste and smell disorders. CASE REPORT The boy's clinical history revealed that a family member was positive for SARS-CoV-2. In the preceding 3 days, the boy's eating habits had changed; he perceived a metallic taste while eating and had a loss of appetite. He also had erythematous skin lesions on the lower limbs for the 2 previous days. A sore throat, nasal congestion, and a runny nose were reported on head and neck examination. A real-time polymerase chain reaction test was positive, confirming the initial diagnostic hypothesis. CONCLUSIONS SARS-CoV-2 virus infection in children and adolescents can be asymptomatic, but it can also occur with fever, dry cough, fatigue, and gastrointestinal symptoms. Due to the unique immune characteristics of pediatric and adolescent patients, the correct interpretation of the gustatory and skin symptoms associated with specific laboratory tests for SARS-CoV-2 infection can lead to the most appropriate management and supportive care.A large amount of evidence suggests that high-density lipoprotein (HDL) has anti-atherosclerotic properties. HDL-cholesterol (HDL-C) has also been widely used as a marker of cardiovascular disease. Recently, it was reported that plasma HDL-C levels are inversely correlated with cancer risk. However, the relationship between HDL and cancer pathophysiology remains unknown. Here, we sought to investigate the effect of HDL on cancer progression. First, we focused on fibronectin-an essential extracellular matrix glycoprotein-as an HDL-associated protein and found that only 7.4% of subjects in this study had fibronectin in HDL isolated from their plasma. The fibronectin-containing HDL (FN-HDL) increased the phosphorylation of focal adhesion kinase (FAK) in HeLa cells compared to HDL without fibronectin, further inducing the phosphorylation in a dose-dependent manner. Second, we found that fibronectin-treated HDL activated the phosphorylation of FAK, and its upstream effector blocked the phosphorylation induced by FN-HDL. Finally, we demonstrated that FN-HDL promoted cancer cell proliferation and adhesion compared to HDL without fibronectin. Our study showed the possible mechanism by which FN-HDL enhanced cancer cell proliferation and adhesion via the FAK signaling pathway. Further investigation of the roles of HDL components in tumorigenesis might provide novel insight into cancer pathophysiology.