Reynoldsfields4115
Emerging multi-drug resistance in recent Salmonella Typhi isolates, causative agent of enteric Typhoid fever, compelled us to investigate alternative therapeutic strategies. The present study encompassed virtual screening, ADMET screening as well as antibacterial activity prediction to shortlist potent lead molecules whose binding affinities (BAs) were checked against major druggable S. Typhi targets. BA profile revealed a deoxy-tetradeutero- curcumin derivative to be novel bioactive compound having high BA towards UDP-N-acetylmuramate-L-alanine ligase (MurC) protein involved in peptidoglycan synthesis. Molecular docking indicated that our lead Binding energy (BE)= -8.00 ± 0.02 kcal/molcould competitively bind to MurC with respect to its natural ligand ATP (BE= -7.65 ± 0.19 kcal/mol). The lead also possessed superior binding and inhibition profile against MurC than other commercial antibiotics. This BE was contributed by Hydrogen (H-) bonds and numerous non-canonical interactions with the evolutionary conserved active-site residues. From molecular docking and coarse-grained dynamics simulations, it was inferred that the novel curcumin derivative was predicted to be potential competitive inhibitor of ATP for MurC-catalytic domain having low relative RMSF (0.59 Å) to inhibit MurC-induced peptidoglycan biosynthesis. The inferences drawn from the study can open new portals for designing efficient therapeutic strategies against S. Typhi.
Enhancer of zeste homolog 2 (EZH2) was recently found to play an important role in cardiovascular disease. However, the role of EZH2 in vascular remodeling induced by mechanical stretch is poorly understood. The aim of the present work was to investigate the role of EZH2 in regulating smooth muscle cell function through mechanical stretch assays and to explore the underlying mechanisms.
WT C57BL/6J mice underwent sham surgery or abdominal aortic constriction. The level of EZH2 expression was determined by Western blotting and immunohistochemical staining. We demonstrated the thickness of vascular remodeling by HE staining. buy MSDC-0160 JASPAR was used to predict transcription factors that could affect EZH2. Chromatin immunoprecipitation was used to substantiate the DNAprotein interactions. Promoter luciferase assays were performed to demonstrate the activity of the transcription factors.
We found that in vivo, AAC significantly reduced EZH2 protein levels in the thoracic aorta. Smooth muscle-specific overexpression of EZH2 was sufficient to attenuate the AAC-induced reduction in trimethylation of Lys-27 in histone 3 and thickening of the arterial media. Administration of GSK-J4 (an inhibitor of H3K27me3 demethylase) induced the same effects. In addition, we found that mechanical stretch regulated the expression of EZH2 through the Yes-associated protein (YAP)- transcriptional factor TEA domain 1 (TEAD) pathway. TEAD1 bound directly to the promoter of EZH2, and blocking the YAP-TEAD1 interaction inhibited EZH2 downregulation due to mechanical stretch.
This study reveals that mechanical stretch downregulates EZH2 through the YAP-TEAD1 pathway, thereby aggravating smooth muscle cell apoptosis and vascular remodeling.
This study reveals that mechanical stretch downregulates EZH2 through the YAP-TEAD1 pathway, thereby aggravating smooth muscle cell apoptosis and vascular remodeling.In light of the worsening opioid epidemic and nationwide parenteral opioid shortage, our institution created an enhanced recovery after surgery (ERAS) protocol. Our objective was to evaluate our initial experience transitioning to ERAS in cardiac surgery. An institutional cardiac ERAS protocol was implemented in April 2018, consisting of opioid-sparing analgesia, liberalization of fasting and activity restrictions, and goal-directed standardization of perioperative care. Clinical outcomes, opioid administration, and pain scores of patients undergoing nonemergent cardiac surgery were reviewed from March 2017 to July 2018. Patients were propensity score matched into pre-ERAS and transition-to-ERAS (t-ERAS) cohorts and compared by univariate analysis. Of 467 patients, 236 patients were well-matched (118 per cohort). The transition to ERAS resulted in a 79% reduction in morphine equivalents through postoperative day 1 (359.3 mg pre-ERAS vs 75.4 mg ERAS, P less then 0.0001). Despite less opioid utilization, t-ERAS patients reported lower pain scores (median 4.88 vs 4.14, P = 0.011). There was no difference in mortality (2% vs 0%, P = 0.498) or postoperative complications including initial hours ventilated (5.3 vs 5.2 hours, P = 0.380), prolonged ventilation (9.3% vs 6.8%, P = 0.473), renal failure (3.4% vs 2.5%, P = 0.701), and ICU length of stay (58.3 vs 70.4 hours, P = 0.272). The transition to cardiac ERAS resulted in significantly reduced opioid administration and improved patient pain scores while maintaining excellent outcomes. Well-supported, multidisciplinary teams of cardiac surgeons, anesthesiologists, and intensivists can dramatically reduce opioid use without sacrificing pain control or excellent clinical outcomes.
The continued rise of Klebsiella pneumoniae resistance to antibiotics is precipitating a medical crisis. Bacteriophages have been hailed as one possible therapeutic option to enhance the efficacy of antibiotics. This study describes the genomic characterization and biological property of a new bacteriophage vB_1086 and its potential for phage therapy application against Klebsiella pneumoniae.
In our study, the double-layer agar plate method isolated a lytic bacteriophage named vB_1086. Besides, we analyzed its biological characteristics and genetic background. Then the antibacterial ability of the bacteriophage vB_1086 combined with antibiotics were analyzed by the combined checkerboard method. The impact on the formation of biofilms was analyzed by crystal violet staining method.
vB_1086 is a lytic bacteriophage with stable biological characteristics and clear genetic background, showing good antibacterial activity in combination with ceftriaxone, and the combination of phage and meropenem can effectively inhibit the formation of biofilm. Besides, the combination of bacteriophage and antimicrobials can effectively alleviate the generation of bacterial resistance and reduce the dosage of antimicrobials.
vB_1086 is a novel phage. To some extent, these results provide valuable information that phage vB_1086 can be combined with antibiotics to reduce the dosage of antimicrobials and alleviate the generation of bacterial resistance.
vB_1086 is a novel phage. To some extent, these results provide valuable information that phage vB_1086 can be combined with antibiotics to reduce the dosage of antimicrobials and alleviate the generation of bacterial resistance.Lymphatic filariasis caused by filarial nematode is an important disease leading to considerable morbidity throughout tropical countries. Even after specific elimination programs, the disease continue to spread in endemic countries. Thus newer therapeutic interventions are urgently needed to control the spread. In the present study, we have seen the effect of andrographolide (andro), a diterpenoid lactone from the leaves of Andrographis paniculata on filarial parasite Setaria cervi. There was time and concentration dependent decrease in motility and viability leading to death of parasite after 6 h of the exposure of andro. Andro showed potential antifilarial activity with an IC50 value of 24.80 μM assessed through MTT assay. There was concentration dependent decrease in the antioxidant enzymes activity and increase in proapoptotic markers after 5 h exposure of andro. Further, molecular docking analysis revealed that andro binds with filarial glutathione-S-transferase at glutathione (GSH) binding site and inhibiting enzyme activity competitively. Andro induced oxidative stress mediated apoptosis in parasites as evidenced by increase in the intracellular reactive oxygen species (ROS) and apoptotic markers.Therefore this study suggested that andro could be further explored as a new antifilarial drug.Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.Sucrase-isomaltase (SI) is the major disaccharidase of the small intestine, exhibiting a broad α-glucosidase activity profile. The importance of SI in gut health is typified by the development of sucrose and starch maldigestion in individuals carrying mutations in the SI gene, like in congenital sucrase-isomaltase deficiency (CSID). Common and rare defective SI gene variants (SIGVs) have also been shown to increase the risk of irritable bowel syndrome (IBS) with symptoms and clinical features similar to CSID and also in symptomatic heterozygote carriers. Here, we investigate the impact of the most abundant and highly pathogenic SIGVs that occur in heterozygotes on wild type SI (SIWT) by adapting an in vitro system that recapitulates SI gene heterozygosity. Our results demonstrate that pathogenic SI mutants interact avidly with SIWT, negatively impact its enzymatic function, alter the biosynthetic pattern and impair the trafficking behavior of the heterodimer. The in vitro recapitulation of a heterozygous state demonstrates potential for SIGVs to act in a semi-dominant fashion, by further reducing disaccharidase activity via sequestration of the SIWT copy into an inactive form of the enzymatic heterodimer. This study provides novel insights into the potential role of heterozygosity in the pathophysiology of CSID and IBS.Despite the efficacy of trastuzumab in treating HER2-positive breast cancer patients, a significant proportion of patients relapse after treatment. The role of C-X-C chemokine receptor type 4 (CXCR4) in trastuzumab resistance was studied only in cell lines and the underlying mechanisms remain largely unclear. This study investigated the role of CXCR4 in trastuzumab resistance in breast cancer patients and explored the possible underlying mechanisms. The study was performed retrospectively on tissue samples from 62 breast cancer patients including 42 who were treated with trastuzumab and chemotherapy and 20 who received chemotherapy alone in adjuvant setting. Expression levels of CXCR4 and its regulators hypoxia-inducible factor 1-alpha (HIF-1α), tristetraprolin (TTP), human antigen R (HuR), itchy E3 ubiquitin protein ligase (ITCH), miR-302a and miR-494 were determined and their associations with tumor recurrence and disease-free survival were analyzed. In trastuzumab-treated patients, high CXCR4 expression was associated with recurrence and was an independent predictor of progression risk after therapy.