Reillyterkelsen6540
Convolutional Neural Networks (CNNs) have become one of the state-of-the-art methods for various computer vision and pattern recognition tasks including facial affective computing. Although impressive results have been obtained in facial affective computing using CNNs, the computational complexity of CNNs has also increased significantly. This means high performance hardware is typically indispensable. Most existing CNNs are thus not generalizable enough for mobile devices, where the storage, memory and computational power are limited. In this paper, we focus on the design and implementation of CNNs on mobile devices for real-time facial affective computing tasks. We propose a light-weight CNN architecture which well balances the performance and computational complexity. The experimental results show that the proposed architecture achieves high performance while retaining the low computational complexity compared with state-of-the-art methods. We demonstrate the feasibility of a CNN architecture in terms of speed, memory and storage consumption for mobile devices by implementing a real-time facial affective computing application on an actual mobile device.Fall Armyworm (FAW) (Spodoptera frugiperda) is a polyphagous and highly destructive pest of many crops. It was recently introduced into Africa and now represents a serious threat to food security, particularly because of yield losses in maize, which is the staple food for the majority of small-scale farmers in Africa. The pest has also led to increased production costs, and threatens trade because of quarantines imposed on produce from the affected countries. There is limited specific knowledge on its management among smallholders since it is such a new pest in Africa. Some synthetic insecticides have been shown to be effective in controlling FAW, but in addition to the economic, health and environmental challenges of pesticide use insecticide resistance is highly prevalent owing to years of FAW management in the Americas. Therefore, there is a need for the development and use of alternatives for the management of FAW. These include plant-derived pesticides. Here we review the efficacy and potential of 69 plant species, which have been evaluated against FAW, and identify opportunities for use among small-scale maize farmers with a focus on how pesticidal plants might be adopted in Africa for management of FAW. The biological activities were diverse and included insecticidal, insectistatic (causing increased larval duration), larvicidal, reduced growth and acute toxicity (resulting in adverse effects within a short time after exposure). While most of these studies have been conducted on American plant taxa many South American plants are now cosmopolitan weeds so these studies are relevant to the African context.Phosphoramidate pro-nucleotides (ProTides) have revolutionized the field of anti-viral and anti-cancer nucleoside therapy, overcoming the major limitations of nucleoside therapies and achieving clinical and commercial success. Despite the translation of ProTide technology into the clinic, there remain unresolved in vivo pharmacokinetic and pharmacodynamic questions. Positron Emission Tomography (PET) imaging using [18F]-labelled model ProTides could directly address key mechanistic questions and predict response to ProTide therapy. Here we report the first radiochemical synthesis of [18F]ProTides as novel probes for PET imaging. As a proof of concept, two chemically distinct radiolabelled ProTides have been synthesized as models of 3'- and 2'-fluorinated ProTides following different radiosynthetic approaches. check details The 3'-[18F]FLT ProTide was obtained via a late stage [18F]fluorination in radiochemical yields (RCY) of 15-30% (n = 5, decay-corrected from end of bombardment (EoB)), with high radiochemical purities (97%) and molar activities of 56 GBq/μmol (total synthesis time of 130 min.). The 2'-[18F]FIAU ProTide was obtained via an early stage [18F]fluorination approach with an RCY of 1-5% (n = 7, decay-corrected from EoB), with high radiochemical purities (98%) and molar activities of 53 GBq/μmol (total synthesis time of 240 min).Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to manipulate their host plants. We used high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS) to examine concentrations of a wide range of CKs in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all six orders of Insecta that contain species known to induce galls Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found CKs in all six orders of insects, and they were not associated exclusively with gall-inducing species. We detected 24 different CK analytes, varying in their chemical structure and biological activity. Isoprenoid precursor nucleotide and riboside forms of trans-zeatin (tZ) and isopentenyladenine (iP) were most responsible for CK production. However, the unusually high concentrations of CKs in insects, and the tendency toward dominance of their CK profiles by tZ and iP suggest that the tRNA-ipt pathway functions differently and substantially more efficiently in insects than in plants.A decline in metabolic health may take place before observing any alteration in the levels of the traditional metabolic markers. New indicators of metabolic derangement are therefore compelling. Irisin is a myokine with important metabolic functions. The role of irisin as a metabolic biomarker in humans has not been fully established yet. We quantified plasma irisin and esRAGE in 106 apparently healthy individuals and we performed a cluster analysis to evaluate their associations with metabolic profile. Plasma levels of various traditional markers of metabolic risk (i.e., glucose and lipid levels) were all within the ranges of normality. We identified two clusters of individuals. Compared to cluster 2, individuals in cluster 1 had higher irisin levels, a metabolic profile shifted toward the limits of the reference ranges and lower esRAGE levels. The traditional metabolic blood tests seem not to be enough to identify a metabolic decline early. Irisin increase and esRAGE decrease may reflect a metabolic derangement at the beginning of its development. The role of these molecules as early biomarkers of decline of metabolic health seems an interesting topic to be further explored.Methods for stabilizing G-quadruplex formation is a promising therapeutic approach for cancer treatment and other biomedical applications because stable G-quadruplexes efficiently inhibit biological reactions. Oligo and polyethylene glycols are promising biocompatible compounds, and we have shown that linear oligoethylene glycols can stabilize G-quadruplexes. Here, we developed a new modified deoxythymine with dibranched or tribranched tetraethylene glycol (TEG) and incorporated these TEG-modified deoxythymines into a loop region that forms an antiparallel G-quadruplex. We analyzed the stability of the modified G-quadruplexes, and the results showed that the tribranched TEG destabilized G-quadruplexes through entropic contributions, likely through steric hindrance. Interestingly, the dibranched TEG modification increased G-quadruplex stability relative to the unmodified DNA structures due to favorable enthalpic contributions. Molecular dynamics calculations suggested that dibranched TEG interacts with the G-quadruplex through hydrogen bonding and CH-π interactions. Moreover, these branched TEG-modified deoxythymine protected the DNA oligonucleotides from degradation by various nucleases in human serum. By taking advantage of the unique interactions between DNA and branched TEG, advanced DNA materials can be developed that affect the regulation of DNA structure.Bacterial ribosome hibernation factors sequester ribosomes in an inactive state during the stationary phase and in response to stress. The cyanobacterial ribosome hibernation factor LrtA has been suggested to inactivate ribosomes in the dark and to be important for post-stress survival. In this study, we addressed the hypothesis that Plastid Specific Ribosomal Protein 1 (PSRP1), the chloroplast-localized LrtA homolog in plants, contributes to the global repression of chloroplast translation that occurs when plants are shifted from light to dark. We found that the abundance of PSRP1 and its association with ribosomes were similar in the light and the dark. Maize mutants lacking PSRP1 were phenotypically normal under standard laboratory growth conditions. Furthermore, the absence of PSRP1 did not alter the distribution of chloroplast ribosomes among monosomes and polysomes in the light or in the dark, and did not affect the light-regulated synthesis of the chloroplast psbA gene product. These results suggest that PSRP1 does not play a significant role in the regulation of chloroplast translation by light. As such, the physiological driving force for the retention of PSRP1 during chloroplast evolution remains unclear.Human facial expressions are regarded as a vital indicator of one's emotion and intention, and even reveal the state of health and wellbeing. Emotional states have been associated with information processing within and between subcortical and cortical areas of the brain, including the amygdala and prefrontal cortex. In this study, we evaluated the relationship between spontaneous human facial affective expressions and multi-modal brain activity measured via non-invasive and wearable sensors functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) signals. The affective states of twelve male participants detected via fNIRS, EEG, and spontaneous facial expressions were investigated in response to both image-content stimuli and video-content stimuli. We propose a method to jointly evaluate fNIRS and EEG signals for affective state detection (emotional valence as positive or negative). Experimental results reveal a strong correlation between spontaneous facial affective expressions and the perceived emotional valence. Moreover, the affective states were estimated by the fNIRS, EEG, and fNIRS + EEG brain activity measurements. We show that the proposed EEG + fNIRS hybrid method outperforms fNIRS-only and EEG-only approaches. Our findings indicate that the dynamic (video-content based) stimuli triggers a larger affective response than the static (image-content based) stimuli. These findings also suggest joint utilization of facial expression and wearable neuroimaging, fNIRS, and EEG, for improved emotional analysis and affective brain-computer interface applications.All-wood biocomposites were prepared with an efficient method. The ionic liquid of 1-butyl-3-methylimidazolium chloride (BMIMCl) was used to impregnate manchurian ash (MA) before hot-pressing, and the all-wood biocomposites were prepared by controllable dissolving and regenerating the cellulose in MA. The Fourier transform infrared analysis suggested that all the components of MA remained unchanged during the preparation. X-ray diffraction, thermogravimetric and scanning electron microscope analysis were carried out to study the process parameters of hot-pressing pressure and time on the crystallinity, thermal properties and microstructure of the all-wood biocomposites. The tensile strength of the prepared all-wood biocomposites reached its highest at 212.6 MPa and was increased by 239% compared with that of the original MA sample. The thermogravimetric analysis indicated that as the thermo-stability of the all-wood biocomposites increased, the mass of the residual carbon increased from 19.7% to 22.7% under a hot-pressing pressure of 10 MPa.