Reidmckinnon1088

Z Iurium Wiki

05). The lightness values of W10 and W20 were significantly lower than that of PE in the second and third weeks (p < 0.05). These results indicated that biodegradable containers containing up to 20% walnut shell powder can substitute plastic packaging materials.Process-induced changes in the morphology of biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends modified with various multifunctional chain-extending cross-linkers (CECLs) are presented. The morphology of unmodified and modified films produced with blown film extrusion is examined in an extrusion direction (ED) and a transverse direction (TD). While FTIR analysis showed only small peak shifts indicating that the CECLs modify the molecular weight of the PBAT/PLA blend, SEM investigations of the fracture surfaces of blown extrusion films revealed their significant effect on the morphology formed during the processing. Due to the combined shear and elongation deformation during blown film extrusion, rather spherical PLA islands were partly transformed into long fibrils, which tended to decay to chains of elliptical islands if cooled slowly. The CECL introduction into the blend changed the thickness of the PLA fibrils, modified the interface adhesion, and altered the deformation behavior of the PBAT matrix from brittle to ductile. The results proved that CECLs react selectively with PBAT, PLA, and their interface. Furthermore, the reactions of CECLs with PBAT/PLA induced by the processing depended on the deformation directions (ED and TD), thus resulting in further non-uniformities of blown extrusion films.Interest in the utilization of plant-based bioactive compounds in foods has increased due to their biochemical activities and as alternatives in the reduction of high concentrations of chemical utilization. However, some of these additives are hydrophobic, thus being harder to disperse into the hydrophilic food matrix. Therefore, an oil-in-water nanoemulsion (RRE1-RRE10) was formulated with different concentrations of red rice extract (1-10% w/v). Nanoemulsion showed droplet sizes within the range of 157.33-229.71 nm and the best formulation (RRE5) was selected based on the creaming index which was stable to flocculation over a range of temperatures (30-90 °C), pH (2-9), and salt concentration (100-600 mM). It showed significantly improved antioxidant and anti-inflammatory activity as compared to its other counterparts. Potential antimicrobial activity against Staphylococcus aureus was attributed to RRE5 nanoemulsion as compared to Escherichia coli. Therefore, due to the potential bioactivity of RRE5 nanoemulsion, it can be scaled up at the industrial level.This study investigated the effects of carbon fibers and graphite flakes on the composite materials' heat dissipation properties and mechanical strength with various hybrid ratios in the matrix. Carbon fibers and graphite flakes with high thermal conductivity showed efficiency in heat dissipation performance, and mechanical strength was reinforced by carbon fiber. However, the heat dissipation performance and mechanical strength were greatly changed according to the mixing ratio. The optimal filler mixing ratio was derived for inducing the enhanced physical properties of the composites reinforced by hybrid fillers with different shapes.Fireproof inorganic coatings based on sodium silicate solution with intumescent additions were prepared and tested to assess their ability to limit the negative effect of a fire. The intumescent materials were obtained by the alkali activation of waste glass powder (obtained by the grinding of recycled soda-lime culet) and slag (waste resulting from the metallurgical industry). The replacement of talc (used as filler in paint formulation) with the intumescent materials obtained by the alkaline activation of waste glass powder (WGP), determined an increase in the intumescence coefficient (up to 65%) and decreased the activation temperature of this process. To evaluate these coatings' abilities to prevent or delay the temperature increase in metal structures, the paints were applied on steel plates and tested in direct contact with the flame of a butane burner for 60 min. The coatings prevented the increase in the steel substrate temperature over one considered critical (500°C) for steel mechanical properties; the combination of two coatings, with different intumescence activation temperatures, correlated with the increase in the coating's thickness, sensibly reduced the rate of temperature increase (up to 75%) in the steel substrate.Chitosan has potential applications in many fields, due to its biocompatibility, biodegradability and reproducibility. However, the insolubility in water restricts its wide application. In order to expand the application of chitosan in the delivery of oil-soluble drugs and improve the efficacy of oil-soluble drugs, N-Glycidyltrimethyl ammonium chloride-modified chitosan (GTA-m-CS) and N,N-Dimethyl-N-dodecyl-N-(1,2-epoxy propyl) ammonium chloride (DDEAC), a kind of reactive surfactant, were synthesized and characterized by FTIR, NMR and XRD methods. The interactions between GTA-m-CS and DDEAC was studied by surface tension, viscosity, conductivity and fluorescence methods. The parameters, including equilibrium surface tension, critical micelle concentrations of DDEAC with different GTA-m-CS concentration, critical aggregation concentration of DDEAC, the amount of DDEAC adsorbed on GTA-m-CS, pc20 and πcmc were obtained from the surface tension curves. The influence of temperature on the above parameters were evaluated. The degree of counterion binding to micelle and the thermodynamic parameters of the system were calculated from the conductivity curves. According to the change of conductivity with temperature, the thermodynamic parameters of micellar formation were calculated. The aggregation number of DDEAC molecules in GTA-m-CS/DDEAC aggregates were calculated from steady-state fluorescence data. Based on the experimental results, the interaction models between GTA-m-CS and DDEAC were proposed. The GTA-m-CS/DDEAC aggregates could be used as curcumin carries, and achieved sustained release.Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.As any other natural or industrial material, polymers can experience some kind of degradation during their service life, resulting in minor to severe changes in their properties [...].This paper aims to explore the material properties of RPC and transverse-bending performance, as well as the crack-width-calculation theory of a densely reinforced steel-RPC composite structure with different fiber parameters. Two fiber types (straight fiber, hybrid fiber) and four fiber volume contents (2%, 2.5%, 3%, 3.5%) were selected to explore the mechanical properties of RPC materials, and the influences of fiber parameters on compressive strength, modulus of elasticity, flexural strength and axial tensile property were investigated. Eight steel-RPC composite plates with different design parameters (fiber type and reinforcement ratio) were conducted to study the transverse-bending performance of steel-RPC composite deck structures. The results show that the addition of 3.5% hybrid fibers to the RPC matrix leads to the optimum axial tensile and flexural properties. Furthermore, the failure mode, load-displacement curve, crack occurrence and propagation characteristics of the composite structure are analyzed in detail. Based on the experimental results, the calculation methods of reinforcement stress and crack width of densely reinforced steel-RPC composite structure are proposed. The calculated results of reinforcement stress and maximum crack width are in good agreement with the actual measured values, which can provide a reference for engineering design.Microplastic pollution has an extremely widespread distribution, to the extent that microplastics could be ingested by aquatic organisms, including species of commercial importance for fisheries and aquaculture. In this work, the anthropogenic particles content of the gastrointestinal tracts of 86 individuals of cultivated European sea bass (Dicentrarchus labrax, n = 45) and gilt-head sea bream (Sparus aurata, n = 41) from Tenerife (Canary Islands, Spain) was determined. Samples were bought at local markets and directly transported to the laboratory. AGK2 After the dissection of the fishes and digestion of the gastrointestinal tracts in 10% KOH (w/v) at 60 °C for 24 h, the digests were filtered (50 µm stainless-steel mesh) and visualized under a stereomicroscope, finding that most of the items were colourless (47.7% for Dicentrarchus labrax and 60.9% for Sparus aurata) and blue (35.3% vs. 24.8%) microfibers, with an average length of 1957 ± 1699 µm and 1988 ± 1853 µm, respectively. Moreover, 15.3% of the microfibres were analysed by Fourier transform infrared spectroscopy, showing the prevalence of cellulosic fibres together with polyester, polyacrylonitrile, and poly(ether-urethane). This pattern (microplastics shapes, colours, sizes, and composition) clearly agrees with previous studies carried out in the Canary Islands region regarding the determination of microplastics in the marine environment.Recently, environmental and ecological concerns have become a major issue owing to the shortage of resources, high cost, and so forth. In my research, I present an innovative, environmentally friendly, and economical way to prepare nanocellulose from grass wastes with a sodium hypochlorite (NaClO) solution of different concentrations (1-6% mol) at different times 10-80 min, washed with distilled water, and treated with ultrasonic waves. The optimum yield of the isolated cellulose was 95%, 90%, and 87% NaClO at 25 °C for 20 min and with NaOH and H2SO4 at 25 °C with 5% M, respectively. The obtained samples were characterized by dynamic light scattering (DLS), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The effect of test temperature and reaction times on the crystallinity index (IC) of GNFC with different treated mediums was carried out and investigated. The IC was analyzed using the diffraction pattern and computed according to the Segal empirical method (method A), and the sum of the area under the crystalline adjusted peaks (method B) and their values proved that the effect of temperature is prominent.

Autoři článku: Reidmckinnon1088 (Loft Whittaker)