Regansloth3026
The continual evolution of photon sources and high-performance detectors drives cutting-edge experiments that can produce very high throughput data streams and generate large data volumes that are challenging to manage and store. In these cases, efficient data transfer and processing architectures that allow online image correction, data reduction or compression become fundamental. This work investigates different technical options and methods for data placement from the detector head to the processing computing infrastructure, taking into account the particularities of modern modular high-performance detectors. In order to compare realistic figures, the future ESRF beamline dedicated to macromolecular X-ray crystallography, EBSL8, is taken as an example, which will use a PSI JUNGFRAU 4M detector generating up to 16 GB of data per second, operating continuously during several minutes. Although such an experiment seems possible at the target speed with the 100 Gb s-1 network cards that are currently available, the simulations generated highlight some potential bottlenecks when using a traditional software stack. An evaluation of solutions is presented that implements remote direct memory access (RDMA) over converged ethernet techniques. A synchronization mechanism is proposed between a RDMA network interface card (RNIC) and a graphics processing unit (GPU) accelerator in charge of the online data processing. The placement of the detector images onto the GPU is made to overlap with the computation carried out, potentially hiding the transfer latencies. As a proof of concept, a detector simulator and a backend GPU receiver with a rejection and compression algorithm suitable for a synchrotron serial crystallography (SSX) experiment are developed. It is concluded that the available transfer throughput from the RNIC to the GPU accelerator is at present the major bottleneck in online processing for SSX experiments.X-ray absorption spectroscopy of thin films is central to a broad range of scientific fields, and is typically detected using indirect techniques. X-ray excited optical luminescence (XEOL) from the sample's substrate is one such detection method, in which the luminescence signal acts as an effective transmission measurement through the film. This detection method has several advantages that make it versatile compared with others, in particular for insulating samples or when a probing depth larger than 10 nm is required. In this work a systematic performance analysis of this method is presented with the aim of providing guidelines for its advantages and pitfalls, enabling a wider use of this method by the thin film community. The efficiency of XEOL is compared and quantified from a range of commonly used substrates. These measurements demonstrate the equivalence between XEOL and X-ray transmission measurements for thin films. Moreover, the applicability of XEOL to magnetic studies is shown by employing XMCD sum rules with XEOL-generated data. Lastly, it is demonstrated that above a certain thickness XEOL shows a saturation-like effect, which can be modelled and corrected for.An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.Measurements of mass attenuation coefficients and X-ray absorption fine structure (XAFS) of zinc selenide (ZnSe) are reported to accuracies typically better than 0.13%. The high accuracy of the results presented here is due to our successful implementation of the X-ray extended range technique, a relatively new methodology, which can be set up on most synchrotron X-ray beamlines. 561 attenuation coefficients were recorded in the energy range 6.8-15 keV with measurements concentrated at the zinc and selenium pre-edge, near-edge and fine-structure absorption edge regions. This accuracy yielded detailed nanostructural analysis of room-temperature ZnSe with full uncertainty propagation. Bond lengths, accurate to 0.003 Å to 0.009 Å, or 0.1% to 0.3%, are plausible and physical. Small variation from a crystalline structure suggests local dynamic motion beyond that of a standard crystal lattice, noting that XAFS is sensitive to dynamic correlated motion. The results obtained in this work are the most accurate to date with comparisons with theoretically determined values of the attenuation showing discrepancies from literature theory of up to 4%, motivating further investigation into the origin of such discrepancies.The development of a direct non-destructive synchrotron-radiation-based total reflection X-ray fluorescence (TXRF) analytical methodology for elemental determinations in zirconium alloy samples is reported for the first time. Discs, of diameter 30 mm and about 1.6 mm thickness, of the zirconium alloys Zr-2.5%Nb and Zircalloy-4 were cut from plates of these alloys and mirror polished. These specimens were presented for TXRF measurements directly after polishing and cleaning. selleck chemicals llc The TXRF measurements were made at the XRF beamline at Elettra synchrotron light source, Trieste, Italy, at two different excitation energies, 1.9 keV and 14 keV, for the determinations of low- and high-Z elements, respectively. The developed analytical methodology involves two complementary quantification schemes, i.e. using either the fundamental parameter method or relative sensitivity based method, allowing quantification of fifteen minor and trace elements with respect to Zr with very good precision and accuracy. In order to countercheck the TXRF analytical results, some samples were analyzed using the DC arc carrier distillation atomic emission spectrometry technique also, which shows an excellent agreement with the results of the TXRF-based methodology developed in this work.