Reesvogel4105
Helicoascotaiwania lacustris and Pleurotheciella erumpens are described from terrestrial, lentic and lotic habitats from New Zealand and France, respectively. New combinations are proposed for Helicoascotaiwania farinosa and Neoascotaiwania fusiformis. Relationships and systematics of the Savoryellales are discussed in the light of recent phylogenies and morphological patterns newly linked with the order through cultural studies.The Capnodiales, which includes fungi known as the sooty moulds, represents the second largest order in Dothideomycetes, encompassing morphologically and ecologically diverse fungi with different lifestyles and modes of nutrition. They include saprobes, plant and human pathogens, mycoparasites, rock-inhabiting fungi (RIF), lichenised, epi-, ecto- and endophytes. The aim of this study was to elucidate the lifestyles and evolutionary patterns of the Capnodiales as well as to reconsider their phylogeny by including numerous new collections of sooty moulds, and using four nuclear loci, LSU, ITS, TEF-1α and RPB2. Based on the phylogenetic results, combined with morphology and ecology, Capnodiales s. lat. is shown to be polyphyletic, representing seven different orders. The sooty moulds are restricted to Capnodiales s. str., while Mycosphaerellales is resurrected, and five new orders including Cladosporiales, Comminutisporales, Neophaeothecales, Phaeothecales and Racodiales are introduced. Four families, three genera, 21 species and five combinations are introduced as new. Furthermore, ancestral reconstruction analysis revealed that the saprobic lifestyle is a primitive state in Capnodiales s. lat., and that several transitions have occurred to evolve lichenised, plant and human parasitic, ectophytic (sooty blotch and flyspeck) and more recently epiphytic (sooty mould) lifestyles.Mollisia is a taxonomically neglected discomycete genus (Helotiales, Leotiomycetes) of commonly encountered saprotrophs on decaying plant tissues throughout temperate regions. The combination of indistinct morphological characters, more than 700 names in the literature, and lack of reference DNA sequences presents a major challenge when working with Mollisia. Unidentified endophytes, including strains that produced antifungal or antiinsectan secondary metabolites, were isolated from conifer needles in New Brunswick and placed with uncertainty in Phialocephala and Mollisia, necessitating a more comprehensive treatment of these genera. In this study, morphology and multigene phylogenetic analyses were used to explore the taxonomy of Mollisiaceae, including Mollisia, Phialocephala, and related genera, using new field collections, herbarium specimens, and accessioned cultures and sequences. The phylogeny of Mollisiaceae was reconstructed and compared using the nuc internal transcribed spacer rDNA (ITS) barcode and partial sequences of the 28S nuc rDNA (LSU) gene, largest subunit of RNA polymerase II (RPB1), DNA topoisomerase I (TOP1), and the hypothetical protein Lipin/Ned1/Smp2 (LNS2). The results show that endophytism is common throughout the Mollisiaceae lineage in a diverse range of hosts but is infrequently attributed to Mollisia because of a paucity of reference sequences. Generic boundaries within Mollisiaceae are poorly resolved and based on phylogenetic evidence the family included species placed in Acephala, Acidomelania, Barrenia, Bispora, Cheirospora, Cystodendron, Fuscosclera, Hysteronaevia, Loramyces, Mollisia, Neopyrenopeziza, Obtectodiscus, Ombrophila, Patellariopsis, Phialocephala, Pulvinata, Tapesia (=Mollisia), and Trimmatostroma. Taxonomic novelties included the description of five novel Mollisia species and five novel Phialocephala species and the synonymy of Fuscosclera with Phialocephala, Acidomelania with Mollisia, and Loramycetaceae with Mollisiaceae.The taxonomy and nomenclature of the genus Aspergillus and its associated sexual (teleomorphic) genera have been greatly stabilised over the last decade. This was in large thanks to the accepted species list published in 2014 and associated metadata such as DNA reference sequences released at the time. It had a great impact on the community and it has never been easier to identify, publish and describe the missing Aspergillus diversity. To further stabilise its taxonomy, it is crucial to not only discover and publish new species but also to capture infraspecies variation in the form of DNA sequences. This data will help to better characterise and distinguish existing species and make future identifications more robust. South Africa has diverse fungal communities but remains largely unexplored in terms of Aspergillus with very few sequences available for local strains. In this paper, we re-identify Aspergillus previously accessioned in the PPRI and MRC culture collections using modern taxonomic approaches. In the process, we re-identify strains to 63 species, describe seven new species and release a large number of new DNA reference sequences.Over the last two decades the molecular phylogeny and classification of Metarhizium has been widely studied. Despite these efforts to understand this enigmatic genus, the basal lineages in Metarhizium are still poorly resolved. click here In this study, a phylogenetic framework is reconstructed for the Clavicipitaceae focusing on Metarhizium through increased taxon-sampling using five genomic loci (SSU, LSU, tef, rpb1, rpb2) and the barcode marker ITS rDNA. Multi-gene phylogenetic analyses and morphological characterisation of green-spored entomopathogenic Metarhizium isolates from Thailand and soil isolates of M. carneum and M. marquandii reveal their ecological, genetic and species diversity. Nineteen new species are recognised in the Metarhizium clade with narrow host ranges two new species are found in the M. anisopliae complex - M. clavatum on Coleoptera larvae and M. sulphureum on Lepidoptera larvae; four new species are found in the M. flavoviride complex - M. biotecense and M. fusoideum on brown plant hoppers (H together with tables listing distinguishing morphological characters between species, host preferences, and geography.The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae.