Reesmoses1381
Finally, KEGG and GSEA indicated that the NOD-like receptor signaling pathway is affected in CNN3 knockdown cell lines.
CNN3 may promote C2C12 cell growth by regulating AKT/mTOR and AMPK/mTOR signaling. The KEGG and GSEA indicated that inhibiting CNN3 may activate several pathways, including the NOD-like receptor pathway and pathways involved in necroptosis, apoptosis, and inflammation.
CNN3 may promote C2C12 cell growth by regulating AKT/mTOR and AMPK/mTOR signaling. The KEGG and GSEA indicated that inhibiting CNN3 may activate several pathways, including the NOD-like receptor pathway and pathways involved in necroptosis, apoptosis, and inflammation.Leptin is involved in regulating reproductive function in chickens, and the development of the leptin system is initiated during the early embryonic stage; however, whether leptin has a specific role in regulating the ovarian development in early post-hatch days is still not fully understood. This study investigated the expression of ovarian functional markers in growing juvenile chickens, along with the effects of leptin on gene expression in the hypothalamus-pituitary-gonadal (HPG) axis on specific ovarian-remodeling days. Leptin receptor (LEPR), follicle-stimulating hormone receptor (FSHR), and the mRNA expression of aromatase (CYP19A1) tended to increase with age in the ovaries of growing chicks. In the ovaries of 7-day-old chicks, intraperitoneally injected leptin significantly increased the mRNA expressions of LEPR, FSHR, and CYP19A1, and this resulted in the increased serum estradiol levels. However, leptin had no effect on hypothalamic LEPR, gonadotropin-releasing hormone 1 (GnRH1), or gonadotropin-inlopment toward puberty in chicken.Apolipoprotein B plays an essential role in systemic lipid metabolism, and it is closely related to cardiovascular diseases. Exercise-training can regulate systemic lipid metabolism, improve heart function, and improve exercise capacity, but the molecular mechanisms involved are poorly understood. We used a Drosophila model to demonstrate that exercise-training regulates the expression of apoLpp (a homolog of apolipoprotein B) in cardiomyocytes, thereby resisting heart insufficiency and low exercise capacity caused by obesity. The apoLpp is an essential lipid carrier produced in the heart and fat body of Drosophila. In a Drosophila genetic screen, low expression of apoLpp reduced obesity and cardiac dysfunction induced by a high-fat diet (HFD). Cardiac-specific inhibition indicated that reducing apoLpp in the heart during HFD reduced the triglyceride content of the whole-body and reduced heart function damage caused by HFD. In exercise-trained flies, the result was similar to the knockdown effect of apoLpp. Therefore, the inhibition of apoLpp plays an important role in HFD-induced cardiac function impairment and low exercise capacity. Although the apoLpp knockdown of cardiomyocytes alleviated damage to heart function, it did not reduce the arrhythmia and low exercise capacity caused by HFD. Exercise-training can improve this condition more effectively, and the possible reason for this difference is that exercise-training regulates climbing ability in ways to promote metabolism. Exercise-training during HFD feeding can down-regulate the expression of apoLpp, reduce the whole-body TG levels, improve cardiac recovery, and improve exercise capacity. Exercise-training can downregulate the expression of apoLpp in cardiomyocytes to resist cardiac function damage and low exercise capacity caused by HFD. The results revealed the relationship between exercise-training and apoLpp and their essential roles in regulating heart function and climbing ability.Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.The influence of environmental conditions has been investigated for different marathon races, but not for the Berlin Marathon, the fastest marathon race course in the world. The aim of this study was to investigate the potential influence of environmental conditions such as temperature, precipitation, sunshine, and atmospheric pressure on marathon race times in the Berlin Marathon since its first event in 1974-2019. A total of n = 882,540 valid finisher records were available for analysis, of which 724,135 correspond to male and 158,405 to female runners. We performed analyses regarding performance levels considering all finishers, the top 3, the top 10, and the top 100 women and men. Within the 46 years of Berlin marathons under study, there was some level of precipitation for 18 years, and 28 years without any rain. Sunshine was predominant in 25 of the events, whilst in the other 21, cloud cover was predominant. There was no significant trend with time in any of the weather variables (e.g., no increase in temperature across the years). Overall runners became slower with increasing temperature and sunshine duration, however, elite runners (i.e., top 3 and top 10) seemed to run faster and improved their race times when the temperature increased (with women improving more than men). Veliparib Top 10 women seemed to benefit more from increasing temperatures than top 10 males, and male top 100 runners seemed to benefit more from increasing temperatures than female top 100 runners. In the top three sub-group, no differences were observed between male and female correlations. In summary, in marathoners competing in the Berlin Marathon between 1974 and 2019, increasing temperatures and sunshine duration showed a different effect on different performance levels where overall runners (i.e., the general mass of runners) became slower with increasing temperature and sunshine duration, but elite runners (i.e., top 3, top 10) became faster with increasing temperatures where sex differences exist.
The coronavirus disease-2019 (COVID-19) pandemic impacted healthcare services for kidney disease patients. Lockdown and social distancing were mandated worldwide, resulting in closure of medical services. The diagnosis of various kidney diseases may have been delayed during the COVID-19 pandemic because non-urgent tests and visits were postponed due to closure of medical services during the lockdown.
We here report the impact of the COVID-19 pandemic on a total number of 209 native kidney diseases requiring renal biopsy for diagnosis in a retrospective observational study from a tertiary hospital in Germany.
The lockdown period in March and April 2020 primarily affected patients admitted to the normal medical ward with a compensatory increased rate of renal biopsies in the postlockdown phase. In addition, there was a shift toward more patients admitted with hemoglobinuria during the COVID-19 pandemic. This phenomenon of an increased number of patients with hemoglobinuria during the COVID-19 pandemic was specifically observed in a subgroup with hypertensive nephropathy requiring renal biopsy and associated with increased proteinuria, not attributed to the COVID-19 lockdown period itself.
To our knowledge, this is the first report of identifying a subpopulation susceptible to closure of medical services during the COVID-19 pandemic and diagnostic delay of specific kidney diseases. Therefore, the COVID-19 pandemic should be regarded as a risk factor especially in patients with diseases other than COVID-19 primarily admitted to the normal medical ward.
To our knowledge, this is the first report of identifying a subpopulation susceptible to closure of medical services during the COVID-19 pandemic and diagnostic delay of specific kidney diseases. Therefore, the COVID-19 pandemic should be regarded as a risk factor especially in patients with diseases other than COVID-19 primarily admitted to the normal medical ward.Aortic dissection (AD) is one of the most fatal cardiovascular emergency. At the anatomical level, AD occurs due to the formation of intimal tears. However, the molecular mechanism underlying this phenomenon remains unknown. Angiotensin II (Ang II) is a important effector in the development of cardiovascular disease that acts through binding to angiotensin type 1 receptor (AT1R). Yes-associated protein (YAP) was recently recognized as a key protein in macrophage activation. To determine whether AT1R and YAP are involved in macrophage-induced endothelial cell (EC) inflammation and AD incidence, we co-cultured THP-1 cells and HAECs in transwell chambers under different culture conditions and apply different conditions to the AD mice model. The results showed that Ang II promoted macrophage M1 polarization and adhesion, upregulated YAP phosphorylation, and induced EC injury that was related to increased levels of multiple pro-inflammatory chemokines. Blocking AT1R function pharmacologically or by transfection with AT1R siRNA can reduce the pro-inflammatory effect induced by Ang II. In addition, siRNA knock down of YAP expression further aggravated the pro-inflammatory effects of Ang II. Treatment with ARB effectively alleviated these pro-inflammatory effects. In the mice AD model, ARB effectively reduced the incidence of AD in mice, decreased M1 macrophages infiltration and AT1R content in the aortic wall and increased the tissue content of YAP. We found that AT1R induces YAP phosphorylation through binding to Ang II, and further promotes macrophage M1 polarization and adhesion to ECs. ARB reduces the incidence of AD in mice and affect macrophage polarization in mice aorta.To survive the Siberian winter, Djungarian hamsters (Phodopus sungorus) adjust their behavior, morphology, and physiology to maintain energy balance. The reduction of body mass and the improvement of fur insulation are followed by the expression of spontaneous daily torpor, a state of reduced metabolism during the resting phase to save additional energy. Since these complex changes require time, the upcoming winter is anticipated via decreasing photoperiod. Yet, the extent of adaptation and torpor use is highly individual. In this study, adaptation was triggered by an artificially changed light regime under laboratory conditions with 20°C ambient temperature and food and water ad libitum. Two approaches analyzed data on weekly measured body mass and fur index as well as continuously recorded core body temperature and activity during (1) the torpor period of 60 hamsters and (2) the entire adaptation period of 11 hamsters, aiming to identify parameters allowing (1) a better prediction of torpor expression in individuals during the torpor period as well as (2) an early estimation of the adaptation extent and torpor proneness.